DIVISIBILITÉ

Le mot « Arithmétique » vient du grec « arithmos » = nombre. En effet, l'arithmétique est la science des nombres.

Citons la célèbre conjecture de Goldbach énoncée en 1742 et à ce jour jamais démontrée : « Tout nombre entier pair est la somme de deux nombres premiers »

- I. Critères de divisibilité
- Un nombre est divisible par 2, s'il est pair (il se termine par 0, 2, 4, 6 ou 8).
- Vidéo https://youtu.be/tviMPAIA-JM

Exemples: 26; 48; 10 024

- Un nombre est divisible par 5, s'il se termine par 0 ou 5.
- Vidéo https://youtu.be/M0f6kNnFCAg

Exemples: 855; 1250

- Un nombre est divisible par 10, s'il se termine par 0.
- Vidéo https://youtu.be/ e-XFV-wses

Exemples: 2150; 548 950

- Un nombre est divisible par 4, si le nombre formé par ses deux derniers chiffres est lui-même divisible par 4.
- Vidéo https://youtu.be/jReCVcOWywE

Exemple: 428 836 (car 36 est divisible par 4)

- Un nombre est divisible par 3, si la somme de ses chiffres est divisible par 3.
- Vidéo https://youtu.be/WVUh b uROk

Exemple: 532 587 (car 5+3+2+5+8+7 = 30 et 30 est divisible par 3)

- Un nombre est divisible par 9, si la somme de ses chiffres est divisible par 9.
- Vidéo https://youtu.be/Sz8HuHAZYHQ

Exemple: 73 854 (car 7+3+8+5+4 = 27 et 27 est divisible par 9)

- Divisibilité par 7 (non exigible) :

21 est divisible par 7, donc 3192 aussi.

- Divisibilité par 11 (non exigible) :

Exemple: 61952 est-il divisible par 11?

55 est divisible par 11, donc 61952 aussi.

Méthode : Appliquer les critères de divisibilité

Vidéo https://youtu.be/BJDE6uOrmYQ

Le nombre 34575 est-il divisible par 2 ? Par 3 ? Par 4 ? Par 5 ? Par 9 ? Par 10 ?

- 34575 n'est pas divisible par 2 car il ne se termine pas par un chiffre pair.
- 34575 est divisible par 3.

En effet, la somme de ses chiffres 3+4+5+7+5 = 24 est divisible par 3.

- 34575 n'est pas divisible par 4 car 75 n'est pas divisible par 4.
- 34575 est divisible par 5 car il se termine par 5.
- 34575 n'est pas divisible par 9. En effet, la somme de ses chiffres **3+4+5+7+5 = 24** n'est pas divisible par 9.
- 34575 n'est pas divisible par 10 car il ne se termine pas par 0.

II. <u>Diviseurs</u>, multiples

1) Exemples:

1) 15 est divisible par 3 et par 5.

On dit que 3 et 5 sont des diviseurs de 15.

On dit également que 15 est un multiple de 3 ou de 5.

2) 1074 est divisible par 3 Car 1+0+7+4 = 12 qui est divisible par 3.

Méthode : Reconnaître un multiple ou un diviseur d'un nombre

Vidéo https://youtu.be/-PLZFIAG99Q

Vidéo https://youtu.be/jteZZBzyai8

- 1) Parmi les nombres suivants, trouver le(s) multiple(s) de 14: 56, 141 et 280
- 2) Dresser la liste des diviseurs de 28.
- 3) Parmi les nombres 2, 3, 5, 9 et 10, déterminer les diviseurs de 456.
- 1) Les multiples successifs de 14 sont : 14, 28, 42, 56, ... 140, 154, ... 280, ...

On reconnaît que 56 est un multiple de 14.

On reconnaît facilement que 140 est un multiple de 14 car 14 x 10 = 140. Donc 141 n'est pas un multiple de 14.

On reconnaît également que 280 est un multiple de 14 car 14 x 20 = 280.

On en déduit que 56 et 280 sont des multiples de 14.

2) 1, 2, 4, 7, 14, 28.

L'astuce est de les chercher par couple. Par exemple, 2 divise 28 donc 14 divise également $28 \text{ car } 2 \times 14 = 28$.

- 3) 2 divise 456 car 456 est pair.
- 3 divise 456 car 4+5+6=15 qui est divisible par 3.
- 5 ne divise pas 456 car 456 ne se termine pas par 0 ou 5.
- 9 ne divise pas 456 car 4+5+6=15 qui n'est pas divisible par 9.
- 10 ne divise pas 456 car 456 ne se termine pas par 0.

2) Définition

<u>Définition</u>: Soit a et b deux entiers. On dit que a est un <u>multiple</u> de b s'il existe un entier k tel que a = k b. On dit alors que b est un diviseur de a.

Exemples et contre-exemple :

- a) 15 est un multiple de 3, car 15 = $k \times 3$ avec k = 5.
- b) 10 est un diviseur de 40, car 40 = $k \times 10$ avec k = 4.

c) Par contre, 13 n'est pas un multiple de 3 car il n'existe pas d'entier k tel que 13 = $k \times 3$.

Propriété:

La somme de deux multiples d'un entier a est un multiple de a.

<u>Démonstration</u>: avec a = 3

Vidéo https://youtu.be/4an6JTwrJV4

Soit *b* et *c* deux multiples de 3.

Comme b est un multiple de 3, il existe un entier k_I tel que $b = 3k_I$.

Comme c est un multiple de 3, il existe un entier k_2 tel que $c = 3k_2$.

Alors : $b + c = 3k_1 + 3k_2 = 3(k_1 + k_2) = 3k$, où $k = k_1 + k_2$.

 $k = k_1 + k_2$ est un entier car somme de deux entiers, donc b + c = 3k avec k entier.

b + c est donc un multiple de 3.

Méthode : Résoudre un problème avec des multiples ou des diviseurs

Vidéo https://youtu.be/7nU2M-zhAjk

Montrer que la somme de trois entiers consécutifs est toujours un multiple de 3.

Soit trois entiers consécutifs qui peuvent donc s'écrire sous la forme :

n, n + 1 et n + 2, où n est un entier quelconque.

Leur somme est S = n + (n + 1) + (n + 2) = n + n + 1 + n + 2 = 3n + 3 = 3(n + 1).

Soit k l'entier tel que, k = n + 1.

Donc S = 3k, avec k entier.

On en déduit que S est un multiple 3.

III. Nombres pairs, impairs

<u>Définition</u>: Un nombre **pair** est un multiple de 2.

Un nombre **impair** est un nombre qui n'est pas pair.

Exemples:

34, 68, 9756786 et 0 sont des nombres pairs

567, 871 et 1 sont des nombres impairs.

<u>Propriétés</u>: Un nombre pair s'écrit sous la forme 2k, avec k entier.

Un nombre impair s'écrit sous la forme 2k+1, avec k entier.

Propriété : Le carré d'un nombre impair est impair.

Démonstration:

Vidéo https://youtu.be/eKo1MpX9ktw

Soit a est un nombre impair. Alors il s'écrit sous la forme a = 2k+1, avec k entier. Donc a^2 = $(2k + 1)^2$ = $4k^2$ + 4k + 1 = $2(2k^2 + 2k)$ + 1 = 2k' + 1, avec k' = $2k^2$ + 2k. k' est entier car somme de deux entiers, donc a^2 s'écrit sous la forme a^2 = 2k' + 1 et donc a^2 est impair.

Méthode: Résoudre un problème avec des nombres pairs ou impairs

Vidéo https://youtu.be/xCLLqx11Le0
Vidéo https://youtu.be/cE3gOMZ0Kko

Montrer que le produit de deux entiers consécutifs est un nombre pair.

Soit deux entiers consécutifs n et n+1.

- Si n est pair, alors il s'écrit sous la forme n = 2k, avec k entier. Alors le produit des deux entiers consécutifs s'écrit : $n(n+1) = 2k(2k+1) = 2k_1$, avec $k_1 = k(2k+1)$ entier. Donc n(n+1) est pair.

- Si n est impair, alors il s'écrit sous la forme n=2k+1, avec k entier. Alors le produit des deux entiers consécutifs s'écrit : $n(n+1)=(2k+1)(2k+2)=2(2k+1)(k+1)=2k_2$, avec $k_2=(2k+1)(k+1)$ entier. Donc n(n+1) est pair.

Dans tous les cas, le produit de deux entiers consécutifs est un nombre pair.

IV. Nombres premiers

- Vidéo https://youtu.be/g9PLLhnCv88
 - 1) Définition

<u>Définition</u>: Un nombre est **premier** s'il possède exactement deux diviseurs qui sont 1 et lui-même.

<u>Liste des nombres premiers inférieurs à 30 :</u> 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Remarques:

- Cette liste est infinie.
- Le nombre 1 n'est pas premier car il n'a qu'un seul diviseur.

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr

ī

2) Décomposition d'un nombre en produits de facteurs premiers

Exemples:

- 20 = 2 x 2 x 5 est une décomposition du nombre 20 en produits de facteurs premiers. En effet, chaque facteur de la décomposition est un nombre premier.
- $-231 = 3 \times 7 \times 11$
- $-225 = 3 \times 3 \times 5 \times 5$

Propriété:

Tout nombre non premier peut se décomposer en produits de facteurs premiers. Cette décomposition est unique à l'ordre des facteurs près.

Méthode : Décomposer un nombre en produits de facteurs premiers

- Vidéo https://youtu.be/BIGalqNz pk
- 1) Décomposer 84 en produits de facteurs premiers.
- 2) Décomposer 300 en produits de facteurs premiers.
- 1) Pour le faire, il est important de bien connaître le début de la liste des nombres premiers : 2, 3, 5, 7, 11, 13, ...

On commence par tester si 84 est divisible par 2 (1er nombre premier). La réponse est « oui » car 84 se termine par un chiffre pair. Et on a : 84 : 2 = 42	84 42	2
On recommence, en testant si 42 est divisible par 2 . La réponse est « oui » et 42 : 2 = 21	84 42 21	2 2
On recommence, en testant si 21 est divisible par 2. La réponse est « non » ! On teste alors le nombre premier suivant dans la liste. Est-ce que 21 est divisible par 3 . La réponse est « oui ». Et on a : 21 : 3 = 7	84 42 21 7	2 2 3
7 est un nombre premier divisible uniquement par 1 et lui même. Et on a 7 : 7 = 1. C'est fini, on trouve 1!	84 42 21 7	2 2 3
La décomposition en facteurs premiers de 84 se lit dans la colonne de droite.	1	1

 $84 = 2 \times 2 \times 3 \times 7$

2) On commence par tester si 300 est divisible par 2 (1er nombre premier). La réponse est « oui » car 300 se termine par un chiffre pair. Et on a : 300 : 2 = 150	300 150	2
On recommence, en testant si 150 est divisible par 2 . La réponse est « oui » et 150 : 2 = 75	300 150 75	2 2
On recommence, en testant si 75 est divisible par 2. La réponse est « non »! On teste alors le nombre premier suivant dans la liste. Est-ce que 75 est divisible par 3 . La réponse est « oui » car 7+5=12 est divisible par 3. Et on a : 75 : 3 = 25	300 150 75 25	2 2 3
On recommence, en testant si 25 est divisible par 3. La réponse est « non » ! On teste alors le nombre premier suivant dans la liste. Est-ce que 25 est divisible par 5 . La réponse est « oui » et on a 25 : 5 = 5 .	300 150 75 25 5	2 2 3 5
On recommence, en testant si 5 est divisible par 5 . La réponse est « oui » et on a 5 : 5 = 1 . C'est fini, on trouve 1 !	300 150 75 25 5	2 2 3 5 5
La décomposition en facteurs premiers de 300 se lit dans la colonne de droite 300 = 2 x 2 x 3 x 5 x 5). ——	1

V. Nombres premiers entre eux

Exemples:

Vidéo https://youtu.be/sSgsrHMyFrl

a) Tous les diviseurs de 60 sont :1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 Tous les diviseurs de 100 sont : 1, 2, 4, 5, 10, 20, 25, 50, 100 Les diviseurs communs à 60 et 100 sont : 1, 2, 4, 5, 10, 20

b) Tous les diviseurs de 20 sont :1, 2, 4, 5, 10, 20 Tous les diviseurs de 63 sont : 1, 3, 7, 9, 21, 63 Le seul diviseur commun à 20 et 63 est : 1

On dit dans ce cas que 20 et 63 sont premiers en eux.

Ce qui n'est pas le cas de 60 et 100 qui ont de nombreux diviseurs communs.

<u>Définition</u>: On dit que deux nombres sont **premiers entre eux** lorsque leur seul diviseur commun est 1.

VI. Application aux fractions

<u>Définition</u>: On dit qu'une fraction est **irréductible**, lorsque son numérateur et son dénominateur sont premiers entre eux.

Méthode : Déterminer des fractions égales

- Vidéo https://youtu.be/HkqUaPYgwQM
- Vidéo https://youtu.be/qZaTliAWkA0
- 1) Simplifier la fraction $\frac{153}{85}$.
- 2) Rendre irréductible la fraction $\frac{60}{126}$.
- 1) Pour simplifier une fraction, il faut décomposer son numérateur et son dénominateur en produits de facteurs premiers.

On a ainsi les décompositions de 153 et 85 :

$$153 = 3 \times 3 \times 17$$
 et $85 = 5 \times 17$

Donc:
$$\frac{153}{85} = \frac{3 \times 3 \times 17}{5 \times 17} = \frac{3 \times 3}{5} = \frac{9}{5}$$
.

2) Pour rendre une fraction irréductible, il faut décomposer son numérateur et son dénominateur en produits de facteurs premiers.

On ainsi les décompositions de 60 et 126 : 60 = 2 x 2 x 3 x 5 et 126 = 2 x 3 x 3 x 7

On a : $\frac{60}{126} = \frac{2 \times 2 \times 3 \times 5}{2 \times 3 \times 3 \times 7} = \frac{2 \times 5}{3 \times 7} = \frac{10}{21}$. 10 et 21 sont premiers entre eux et donc :

 $\frac{10}{21}$ est la fraction irréductible égale à $\frac{60}{126}$.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales