LES SUITES (Partie 2)

I. <u>Limites et comparaison</u>

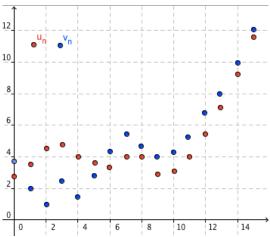
1) Théorèmes de comparaison

Théorème 1:

Soit (u_n) et (v_n) deux suites définies sur \mathbb{N} .

Si, à partir d'un certain rang, $u_n \le v_n$ et $\lim_{n \to +\infty} u_n = +\infty$ alors $\lim_{n \to +\infty} v_n = +\infty$.

Par abus de langage, on pourrait dire que la suite (u_n) pousse la suite (v_n) vers $+\infty$ à partir d'un certain rang.



Démonstration au programme :

Soit un nombre réel a.

- $\lim_{n\to+\infty}u_n=+\infty$, donc l'intervalle]a; $+\infty[$ contient tous les termes de la suite à partir d'un certain rang que l'on note n_1 .

On a donc pour tout $n \ge n_1$, $a < u_n$.

- A partir d'un certain rang, que l'on note n_2 , on a $u_n \leq v_n$.
- Ainsi pour tout $n \ge \max(n_1; n_2)$, on a : $a < u_n \le v_n$.

On en déduit que l'intervalle]a; $+\infty[$ contient tous les termes de la suite (v_n) à partir du rang $\max(n_1; n_2)$.

Et donc $\lim_{n\to+\infty} v_n = +\infty$.

Théorème 2:

Soit (u_n) et (v_n) deux suites définies sur \mathbb{N} .

Si, à partir d'un certain rang, $u_n \ge v_n$ et $\lim_{n \to +\infty} u_n = -\infty$ alors $\lim_{n \to +\infty} v_n = -\infty$.

Méthode: Déterminer une limite par comparaison

Vidéo https://youtu.be/iQhh46LupN4

Déterminer la limite suivante : $\lim_{n \to +\infty} n^2 + (-1)^n$

$$(-1)^n \ge -1 \text{ donc } n^2 + (-1)^n \ge n^2 - 1$$

Or
$$\lim_{n\to+\infty} n^2 - 1 = +\infty$$
 donc par comparaison $\lim_{n\to+\infty} n^2 + (-1)^n = +\infty$.

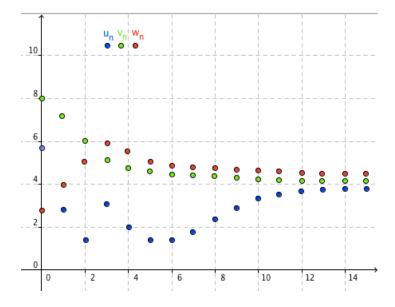
2) Théorème d'encadrement

Théorème des gendarmes :

Soit (u_n) , (v_n) et (w_n) trois suites définies sur \mathbb{N} . Si, à partir d'un certain rang, $u_n \leq v_n \leq w_n$ et $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = L$ alors $\lim_{n \to +\infty} v_n = L$.

Par abus de langage, on pourrait dire que les suites (u_n) et (w_n) (les gendarmes) se resserrent autour de la suite (v_n) à partir d'un certain rang pour la faire converger vers la même limite.

Ce théorème est également appelé le **théorème du sandwich**.



<u>Démonstration</u>:

Soit un intervalle ouvert I contenant *L*.

- $\lim_{n\to+\infty}u_n=L$, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n_1 .

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

- $\lim_{n\to+\infty} w_n = L$, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n_2 .
- A partir d'un certain rang, que l'on note n_3 , on a $u_n \le v_n \le w_n$.
- Ainsi pour tout $n \ge \max(n_1; n_2; n_3)$, l'intervalle I contient tous les termes de la suite (v_n) .

Et donc $\lim_{n\to+\infty} v_n = L$.

Méthode : Déterminer une limite par encadrement

Vidéo https://youtu.be/OdzYjz_vQbw

Déterminer la limite suivante : $\lim_{n \to +\infty} 1 + \frac{\sin n}{n}$

On a: $-1 \le \sin n \le 1$, donc: $-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$

Or : $\lim_{n\to+\infty} -\frac{1}{n} = \lim_{n\to+\infty} \frac{1}{n} = 0$ donc d'après le théorème des gendarmes $\lim_{n\to+\infty} \frac{\sin n}{n} = 0$

Et donc $\lim_{n \to +\infty} 1 + \frac{\sin n}{n} = 1$.

II. Suites majorées, minorées, bornées

1) <u>Définitions</u>:

<u>Définitions</u>: - La suite (u_n) est **majorée** s'il existe un réel M tel que pour tout entier $n \in \mathbb{N}, u_n \leq M$.

- La suite (u_n) est **minorée** s'il existe un réel m tel que pour tout entier $n \in \mathbb{N}$, $u_n \ge m$.
- La suite (u_n) est **bornée** si elle est à la fois majorée et minorée.

Exemples:

- Les suites de terme général $\cos n$ ou $(-1)^n$ sont bornées.
- La suite de terme général n^2 est minorée par 0.

Méthode : Démontrer qu'une suite est majorée ou minorée

Vidéo https://youtu.be/F1u_BVwiW8E

On considère la suite (u_n) définie pour tout entier naturel n par $u_{n+1} = \frac{1}{3}u_n + 2$ et $u_0 = 2$. Démontrer par récurrence que la suite (u_n) est majorée par 3.

• Initialisation:

 $u_0 = 2 < 3$

La propriété est donc vraie pour n = 0.

Hérédité :

- Hypothèse de récurrence :

Supposons qu'il existe un entier k tel que la propriété soit vraie : $u_k < 3$.

- <u>Démontrons que</u>: La propriété est vraie au rang k+1: $u_{k+1} < 3$.

On a:
$$u_k < 3 \text{ donc } \frac{1}{3}u_k < \frac{1}{3} \times 3 \text{ et donc } \frac{1}{3}u_k + 2 < \frac{1}{3} \times 3 + 2.$$

Soit : $u_{k+1} < 3$

• Conclusion:

La propriété est vraie pour n = 0 et héréditaire à partir de ce rang. D'après le principe de récurrence, elle est vraie pour tout entier naturel n, soit : $u_n < 3$.

2) Convergence des suites monotones

<u>Propriété</u>: Soit (u_n) une suite croissante définie sur \mathbb{N} .

Si $\lim_{n\to+\infty} u_n = L$ alors la suite (u_n) est majorée par L.

Démonstration par l'absurde :

Démontrons par l'absurde en supposant le contraire, soit : « Il existe un rang p, tel que $u_p > L$. »

- L'intervalle ouvert]L-1; $u_p[$ contient L.

Or, par hypothèse, $\lim_{n\to+\infty}u_n=L$. Donc l'intervalle]L-1; $u_p[$ contient tous les termes de la suite (u_n) à partir d'un certain rang (1).

- Comme (u_n) est croissante : $u_n \ge u_p$ pour n > p.

Donc si n > p, alors $u_n \notin [L-1; u_p]$ (2).

(1) et (2) sont contradictoires, on en déduit qu'il n'existe pas $p \in \mathbb{N}$, tel que $u_p > L$.

Et donc la suite (u_n) est majorée par L.

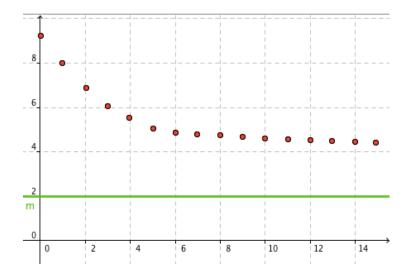
Théorème de convergence monotone :

- Si une suite croissante est majorée alors elle est convergente.
- Si une suite décroissante est minorée alors elle est convergente.

- Admis -

Remarque:

Ce théorème permet de s'assurer de la convergence mais ne donne pas la limite. Dans l'exemple ci-dessous, la suite décroissante est minorée par 2. Cela prouve que la limite de la suite est supérieure à 2 mais n'est pas nécessairement égale à 2.



Méthode : Utiliser le théorème de convergence monotone

Vidéo https://youtu.be/gO-MQUIBAfo

On considère la suite (u_n) définie pour tout entier naturel n par $u_{n+1} = \frac{1}{3}u_n + 2$ et $u_0 = 2$.

Démontrer que la suite (u_n) est convergente et calculer sa limite.

- On a démontré dans le paragraphe I. que la suite (u_n) est croissante. On a démontré dans la méthode précédente que la suite (u_n) est majorée par 3. D'après le théorème de convergence monotone, on en déduit que la suite (u_n) est convergente.
- On pose : $\lim_{n\to +\infty}u_{n+1}=\lim_{n\to +\infty}u_n=L.$ Or $u_{n+1}=\frac{1}{3}u_n+2$, donc $\lim_{n\to +\infty}u_{n+1}=\lim_{n\to +\infty}\frac{1}{3}u_n+2=\frac{1}{3}L+2$ par produit et somme de limites.

Une limite étant unique, on en déduit que $L = \frac{1}{3}L + 2$, soit L = 3.

La suite (u_n) converge donc vers 3.

Corollaire:

- 1) Si une suite croissante est non majorée alors elle tend vers $+\infty$.
- 2) Si une suite décroissante est non minorée alors elle tend vers $-\infty$.

Démonstration au programme du 1):

Soit un réel a.

Comme (u_n) n'est pas majorée, il existe un entier p tel que $u_p > a$.

La suite (u_n) est croissante donc pour tout n > p, on a : $u_n \ge u_p$.

Donc pour tout n > p, on a : $u_n > a$.

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Et donc à partir d'un certain rang p, tous les termes de la suite appartiennent à l'intervalle a; $+\infty$ [.

On en déduit que $\lim_{n\to+\infty} u_n = +\infty$.

III. Comportement à l'infini d'une suite géométrique

1) Rappel

<u>Définition</u>: Une suite (u_n) est une **suite géométrique** s'il existe un nombre q tel que pour tout entier n, on a : $u_{n+1} = q \times u_n$. Le nombre q est appelé **raison** de la suite.

Exemple: La suite (u_n) définie par $u_{n+1} = -3u_n$ et $u_0 = 5$ est une suite géométrique de raison -3 et de premier terme 5.

<u>Propriété</u> : (u_n) est une suite géométrique de raison q et de premier terme u_0 . Pour tout entier naturel n, on a : $u_n = u_0 \times q^n$.

Exemple: Pour la suite précédente, on a pour tout $n: u_n = 5 \times (-3)^n$.

2) Limites

q	$q \le -1$	-1 < q < 1	q = 1	q > 1
$\lim_{n\to\infty}q^n$	Pas de limite	0	1	+∞

Démonstration au programme dans le cas q > 1:

<u>Prérequis</u>: Pour tout entier naturel n, on a : $(1+a)^n \ge 1 + na$ (inégalité de Bernoulli), démontrée dans le chapitre « LES SUITES (Partie 1) Paragraphe I. ».

On suppose que q > 1, alors on peut poser q = a + 1 avec a > 0.

$$q^n = (1+a)^n \ge 1 + na$$
.

Or $\lim_{n\to\infty} 1 + na = +\infty$ car a > 0.

Donc d'après le théorème de comparaison : $\lim_{n\to\infty}q^n=+\infty$.

Exemple:

La suite de terme général -5×4^n a pour limite $-\infty$ car $\lim_{n \to \infty} 4^n = +\infty$.

3) Somme des termes d'une suite géométrique

Propriété : n est un entier naturel non nul et q un réel différent de 1 alors on a :

$$1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

Méthode : Utiliser la limite d'une suite géométrique

■ Vidéo https://youtu.be/XTftGHfnYMw

Déterminer les limites suivantes :

a)
$$\lim_{n\to+\infty}\frac{(-2)^n}{3}$$

b)
$$\lim_{n\to+\infty} 2^n - 3^n$$

a)
$$\lim_{n \to +\infty} \frac{(-2)^n}{3}$$
 b) $\lim_{n \to +\infty} 2^n - 3^n$ c) $\lim_{n \to +\infty} 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n$

a) $(-2)^n$ est une suite géométrique de raison -2 strictement inférieure à -1.

Donc $(-2)^n$ ne possède pas de limite.

Et donc $\lim_{n\to+\infty} \frac{(-2)^n}{3}$ n'existe pas.

b) •
$$\lim_{n \to +\infty} 2^n = +\infty$$
 et $\lim_{n \to +\infty} 3^n = +\infty$

Il s'agit d'une forme indéterminée du type " $\infty - \infty$ ".

• Levons l'indétermination :

$$2^{n} - 3^{n} = 3^{n} \left(\frac{2^{n}}{3^{n}} - 1 \right) = 3^{n} \left(\left(\frac{2}{3} \right)^{n} - 1 \right)$$

• Or $\lim_{n\to+\infty} \left(\frac{2}{3}\right)^n = 0$, car $\left(\frac{2}{3}\right)^n$ est une suite géométrique de raison $\frac{2}{3}$ avec

$$-1 < \frac{2}{3} < 1.$$

Donc:
$$\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n - 1 = -1.$$

Or $\lim_{n\to +\infty} 3^n = +\infty$ car 3^n est une suite géométrique de raison 3 strictement supérieure à 1.

Donc par limite d'un produit $\lim_{n \to +\infty} 3^n \left(\left(\frac{2}{3} \right)^n - 1 \right) = -\infty$

Soit:
$$\lim_{n\to+\infty} 2^n - 3^n = -\infty$$
.

c) On reconnaît les n premiers termes d'une suite géométrique de raison $\frac{1}{2}$ et de premier terme 1. Donc:

$$1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 2 \times \left(1 - \left(\frac{1}{2}\right)^{n+1}\right)$$

Or
$$\lim_{n\to+\infty} \left(\frac{1}{2}\right)^{n+1} = 0$$
, comme limite d'une suite géométrique de raison $\frac{1}{2}$ avec

$$-1 < \frac{1}{2} < 1.$$

Donc:
$$\lim_{n \to +\infty} 1 - \left(\frac{1}{2}\right)^{n+1} = 1.$$

Et donc :
$$\lim_{n \to +\infty} 2\left(1 - \left(\frac{1}{2}\right)^{n+1}\right) = 2.$$

Soit:
$$\lim_{n \to +\infty} 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n = 2.$$

Méthode : Étudier un phénomène modélisable par une suite

- Vidéo https://youtu.be/6-vFnQ6TghM
- Vidéo https://youtu.be/0CNt_fUuwEY

Un investisseur dépose 5000 € sur un compte rémunéré à 3 % par an. Chaque année suivante, il dépose 300 € de plus.

On note (u_n) la somme épargnée à l'année n.

On a alors : $u_{n+1} = 1,03u_n + 300$ et $u_0 = 5000$.

- 1) Calculer u_1 et u_2 .
- 2) Prouver que la suite (v_n) définie pour tout entier n par $v_n = u_n + 10000$ est géométrique et donner sa raison et son premier terme.
- 3) Exprimer v_n en fonction de n.
- 4) En déduire v_n en fonction de n.
- 5) Étudier les variations de (v_n) .

1)
$$u_1 = 1,03u_0 + 300 = 5450$$

 $u_2 = 1,03u_1 + 300 = 5913,5$

2)
$$v_{n+1} = u_{n+1} + 10000$$

= $1,03u_n + 300 + 10000$
= $1,03u_n + 10300$
= $1,03(v_n - 10000) + 10300$, car $v_n = u_n + 10000$
= $1,03v_n - 10300 + 10300$
= $1,03v_n$

Donc (v_n) est une suite géométrique de raison 1,03 et de premier terme $v_0 = u_0 + 10000 = 5000 + 10000 = 15000$.

3) Pour tout n, $v_n = 15000 \times 1,03^n$.

4) Pour tout
$$n$$
, $u_n = v_n - 10000 = 15000 \times 1,03^n - 10000$
On a alors : $u_{10} = 15000 \times 1,03^{10} - 10000 \approx 10158,75$

5) Pour tout n,

$$u_{n+1} - u_n = 15000 \times 1,03^{n+1} - 10000 - (15000 \times 1,03^n - 10000)$$

$$= 15000 \times (1,03^{n+1} - 1,03^n)$$

$$= 15000 \times 1,03^n \times (1,03 - 1)$$

$$= 450 \times 1,03^n > 0$$

Donc la suite (u_n) est strictement croissante.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales