SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Vidéo https://youtu.be/pHq6oClOyIU

I. Suites arithmétiques

1) Définition

Exemple:

Considérons une suite numérique (u_n) où la différence entre un terme et son précédent reste constante et égale à 5.

Si le premier terme est égal à 3, les premiers termes successifs sont :

 $u_0 = 3$,

 $u_1 = 8$,

 $u_2 = 13$,

 $u_3 = 18$.

Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : $\begin{cases} u_0 = 3 \\ u_{n+1} = u_n + 5 \end{cases}$

<u>Définition</u>: Une suite (u_n) est une <u>suite arithmétique</u> s'il existe un nombre r tel que pour tout entier n, on a : $u_{n+1} = u_n + r$.

Le nombre r est appelé <u>raison</u> de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

- 1) La suite (u_n) définie par : $u_n = 7 9n$ est-elle arithmétique ?
- 2) La suite (v_n) définie par : $v_n = n^2 + 3$ est-elle arithmétique ?

1)
$$u_{n+1} - u_n = 7 - 9(n+1) - 7 + 9n = 7 - 9n - 9 - 7 + 9n = -9$$
.

La différence entre un terme et son précédent reste constante et égale à -9. (u_n) est une suite arithmétique de raison -9.

2)
$$v_{n+1} - v_n = (n+1)^2 + 3 - n^2 - 3 = n^2 + 2n + 1 + 3 - n^2 - 3 = 2n + 1$$
.

La différence entre un terme et son précédent ne reste pas constante.

 (v_n) n'est pas une suite arithmétique.

Vidéo https://youtu.be/600KhPMHvBA

<u>Propriété</u> : (u_n) est une suite arithmétique de raison r et de premier terme u_0 . Pour tout entier naturel n, on a : $u_n = u_0 + nr$.

Démonstration:

La suite arithmétique (u_n) de raison r et de premier terme u_0 vérifie la relation $u_{n+1} = u_n + r$.

En calculant les premiers termes :

$$u_1 = u_0 + r$$

$$u_2 = u_1 + r = (u_0 + r) + r = u_0 + 2r$$

$$u_3 = u_2 + r = (u_0 + 2r) + r = u_0 + 3r$$

. . .

$$u_n = u_{n-1} + r = (u_0 + (n-1)r) + r = u_0 + nr.$$

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u_n) tel que $u_5 = 7$ et $u_9 = 19$.

- 1) Déterminer la raison et le premier terme de la suite (u_n) .
- 2) Exprimer u_n en fonction de n.
- 1) Les termes de la suite sont de la forme $u_n = u_0 + nr$

Ainsi
$$u_5 = u_0 + 5r = 7$$
 et
 $u_9 = u_0 + 9r = 19$.

On soustrayant membre à membre, on obtient : 5r - 9r = 7 - 19 donc r = 3.

Comme $u_0 + 5r = 7$, on a: $u_0 + 5 \times 3 = 7$ et donc: $u_0 = -8$.

2)
$$u_n = u_0 + nr$$
 soit $u_n = -8 + n \times 3$ ou encore $u_n = 3n - 8$

2) Variations

<u>Propriété</u> : (u_n) est une suite arithmétique de raison r.

- Si r > 0 alors la suite (u_n) est croissante.
- Si r < 0 alors la suite (u_n) est décroissante.

<u>Démonstration</u>: $u_{n+1} - u_n = u_n + r - u_n = r$.

- Si r > 0 alors $u_{n+1} u_n > 0$ et la suite (u_n) est croissante.
- Si r < 0 alors $u_{n+1} u_n < 0$ et la suite (u_n) est décroissante.

Exemple:

Vidéo https://youtu.be/R3sHNwOb02M

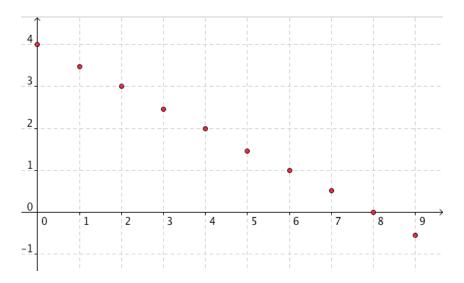
La suite arithmétique (u_n) définie par $u_n = 5 - 4n$ est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple:

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.



II. Suites géométriques

1) Définition

Exemple:

Considérons une suite numérique (u_n) où le rapport entre un terme et son précédent reste constant et égale à 2.

Si le premier terme est égal à 5, les premiers termes successifs sont :

 $u_0 = 5$,

 $u_1 = 10$,

 $u_2 = 20$,

 $u_3 = 40.$

Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La suite est donc définie par :
$$\begin{cases} u_0 = 5 \\ u_{n+1} = 2u_n \end{cases}$$

Vidéo https://youtu.be/WTmdtbQpa0c

<u>Définition</u>: Une suite (u_n) est une <u>suite géométrique</u> s'il existe un nombre q tel que pour tout entier n, on a : $u_{n+1} = q \times u_n$.

Le nombre q est appelé <u>raison</u> de la suite.

Méthode : Démontrer si une suite est géométrique

Vidéo https://youtu.be/YPbEHxuMaeQ

La suite (u_n) définie par : $u_n = 3 \times 5^n$ est-elle géométrique ?

$$\frac{u_{n+1}}{u_n} = \frac{3 \times 5^{n+1}}{3 \times 5^n} = \frac{5^{n+1}}{5^n} = 5^{n+1-n} = 5.$$

Le rapport entre un terme et son précédent reste constant et égale à 5.

 (u_n) est une suite géométrique de raison 5 et de premier terme $u_0 = 3 \times 5^0 = 3$.

Exemple concret:

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%. Chaque année, le capital est multiplié par 1,04.

Ce capital suit une progression géométrique de raison 1,04.

On a ainsi:

 $u_1 = 1,04 \times 500 = 520$ $u_2 = 1,04 \times 520 = 540,80$ $u_3 = 1,04 \times 540,80 = 562,432$

De manière générale : $u_{n+1} = 1.04 \times u_n$ avec $u_0 = 500$

On peut également exprimer u_n en fonction de n: $u_n = 500 \times 1,04^n$

<u>Propriété</u> : (u_n) est une suite géométrique de raison q et de premier terme u_0 . Pour tout entier naturel n, on a : $u_n = u_0 \times q^n$.

Démonstration :

La suite géométrique (u_n) de raison q et de premier terme u_0 vérifie la relation $u_{n+1} = q \times u_n$.

En calculant les premiers termes :

$$u_1 = q \times u_0$$

$$u_2 = q \times u_1 = q \times (q \times u_0) = q^2 \times u_0$$

$$u_3 = q \times u_2 = q \times (q^2 \times u_0) = q^3 \times u_0$$

. . .

$$u_n = q \times u_{n-1} = q \times \left(q^{n-1}u_0\right) = q^n \times u_0.$$

Méthode : Déterminer la raison et le premier terme d'une suite géométrique

Vidéo https://youtu.be/wUfleWpRr10

Considérons la suite géométrique (u_n) tel que $u_a = 8$ et $u_7 = 512$.

Déterminer la raison et le premier terme de la suite (u_n) .

Les termes de la suite sont de la forme $u_n = q^n \times u_0$

Ainsi
$$u_4 = q^4 \times u_0 = 8$$
 et $u_7 = q^7 \times u_0 = 512$.

Ainsi:
$$\frac{u_7}{u_4} = \frac{q^7 \times u_0}{q^4 \times u_0} = q^3$$
 et $\frac{u_7}{u_4} = \frac{512}{8} = 64$ donc $q^3 = 64$.

On utilise la fonction racine troisième de la calculatrice pour trouver le nombre qui élevé au cube donne 64.

Ainsi
$$q = \sqrt[3]{64} = 4$$

Comme
$$q^4 \times u_0 = 8$$
, on a : $4^4 \times u_0 = 8$ et donc : $u_0 = \frac{1}{32}$.

2) Variations

<u>Propriété</u> : (u_n) est une suite géométrique de raison q et de premier terme non nul u_0 . Pour $u_0 > 0$:

- Si q > 1 alors la suite (u_n) est croissante.
- Si 0 < q < 1 alors la suite (u_n) est décroissante.

Pour $u_0 < 0$:

- Si q > 1 alors la suite (u_n) est décroissante.
- Si 0 < q < 1 alors la suite (u_n) est croissante.

Démonstration dans le cas où $u_0 > 0$:

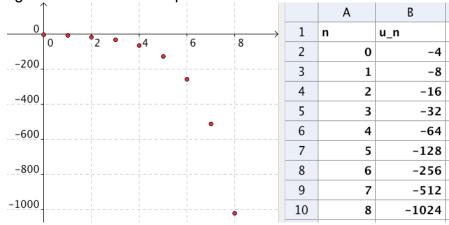
$$u_{n+1} - u_n = q^{n+1}u_0 - q^n u_0 = u_0 q^n (q - \overline{1}).$$

- Si q > 1 alors $u_{n+1} u_n > 0$ et la suite (u_n) est croissante.
- Si 0 < q < 1 alors $u_{\scriptscriptstyle n+1}-u_{\scriptscriptstyle n}$ < 0 et la suite ($u_{\scriptscriptstyle n}$) est décroissante.

Exemple:

Vidéo https://youtu.be/vLshnJqW-64

La suite géométrique (u_n) définie par $u_n = -4 \times 2^n$ est décroissante car le premier terme est négatif et la raison est supérieure à 1.



Remarque : Si la raison q est négative alors la suite géométrique n'est pas monotone.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales

RÉSUMÉS	(u _n) une suite arithmétique	Exemple :	
	- de raison r	$r = -0.5$ et $u_0 = 4$	
	- de premier terme u_0 .		
Définition	$u_{n+1} = u_n + r$	$u_{n+1} = u_n - 0.5$ La différence entre un terme et son précédent est égale à -0.5.	
Propriété	$u_n = u_0 + nr$	$u_n = 4 - 0.5n$	
Variations	Si $r > 0$: (u_n) est croissante. Si $r < 0$: (u_n) est décroissante.	r = -0.5 < 0 La suite (u_n) est décroissante.	
Représentation graphique	Remarque : Les points de la représentation graphique sont alignés.	-4 -3 -2 -1 -0 0 1 2 3 4 5 6 7 8 9	

	(u _n) une suite géométrique	Exemple :
	de raison q	$q = 2$ et $u_0 = -4$
	de premier terme u_0 .	
Définition	$u_{_{n+1}}=q\times u_{_{n}}$	$u_{_{n+1}}=2\times u_{_{n}}$ Le rapport entre un terme et son précédent est égal à 2.
Propriété	$u_n = u_0 \times q^n$	$u_n = -4 \times 2^n$
Variations	Pour $u_0 > 0$: Si $q > 1$: (u_n) est croissante. Si $0 < q < 1$: (u_n) est décroissante. Pour $u_0 < 0$: Si $q > 1$: (u_n) est décroissante. Si $0 < q < 1$: (u_n) est croissante.	$u_0 = -4 < 0$ $q = 2 > 1$ La suite (u_n) est décroissante.
Représentation graphique	Remarque : Si $q < 0$: la suite géométrique n'est ni croissante ni décroissante.	-200 -400 -800 -1000