SECOND DEGRE (Partie 2)

I. Résolution d'une équation du second degré

Définition : Une équation du second degré est une équation de la forme $ax^2 + bx + c = 0$ où a, b et c sont des réels avec $a \ne 0$.

Une solution de cette équation s'appelle une racine du trinôme $ax^2 + bx + c$.

Exemple:

L'équation $3x^2 - 6x - 2 = 0$ est une équation du second degré.

<u>Définition</u>: On appelle <u>discriminant</u> du trinôme $ax^2 + bx + c$, le nombre réel, noté Δ , égal à $b^2 - 4ac$.

Exemple : Le discriminant de l'équation $3x^2 - 6x - 2 = 0$ est : $\Delta = (-6)^2 - 4 \times 3 \times (-2) = 36 + 24 = 60$. En effet, a = 3, b = -6 et c = -2.

Propriété : Soit Δ le discriminant du trinôme $ax^2 + bx + c$.

- Si Δ < 0 : L'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle.
- Si $\Delta = 0$: L'équation $ax^2 + bx + c = 0$ a une unique solution : $x_0 = -\frac{b}{2\pi}$.
- Si $\Delta > 0$: L'équation $ax^2 + bx + c = 0$ a deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Méthode : Résoudre une équation du second degré

- Vidéo https://youtu.be/youUIZ-wsYk
- Vidéo https://youtu.be/RhHheS2Wpyk
- Vidéo https://youtu.be/v6fl2RqCCiE

Résoudre les équations suivantes :

a)
$$2x^2 - x - 6 = 0$$
 b) $2x^2 - 3x + \frac{9}{8} = 0$ c) $x^2 + 3x + 10 = 0$

c)
$$x^2 + 3x + 10 = 0$$

a) Calculons le discriminant de l'équation $2x^2 - x - 6 = 0$: a = 2, b = -1 et c = -6 donc $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 2 \times (-6) = 49$.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{49}}{2 \times 2} = -\frac{3}{2}$$

$$x_{2} = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{49}}{2 \times 2} = 2$$

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr

b) Calculons le discriminant de l'équation $2x^2 - 3x + \frac{9}{8} = 0$:

a = 2, b = -3 et c =
$$\frac{9}{8}$$
 donc Δ = b^2 – 4ac = $(-3)^2$ – 4 x 2 x $\frac{9}{8}$ = 0.

Comme Δ = 0, l'équation possède une unique solution :

$$x_0 = -\frac{b}{2a} = -\frac{-3}{2 \times 2} = \frac{3}{4}$$

c) Calculons le discriminant de l'équation $x^2 + 3x + 10 = 0$: a = 1, b = 3 et c = 10 donc Δ = $b^2 - 4ac$ = $3^2 - 4x$ 1 x 10 = -31.

Comme Δ < 0, l'équation ne possède pas de solution réelle.

II. Factorisation d'un trinôme

Propriété : Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.

- Si Δ = 0 : Pour tout réel x, on a : $f(x) = a(x - x_0)^2$.

- Si $\Delta > 0$: Pour tout réel x, on a : $f(x) = a(x-x_1)(x-x_2)$.

- Admis

Remarque : Si Δ < 0, on n'a pas de forme factorisée de f.

Méthode : Factoriser un trinôme

Vidéo https://youtu.be/eKrZK1lisc8

Factoriser les trinômes suivants : a) $4x^2 + 19x - 5$ b) $9x^2 - 6x + 1$

a) On cherche les racines du trinôme $4x^2 + 19x - 5$:

Calcul du discriminant : $\Delta = 19^2 - 4 \times 4 \times (-5) = 441$

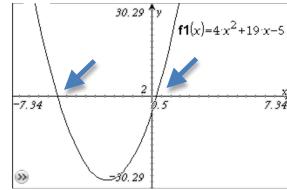
Les racines sont : $x_1 = \frac{-19 - \sqrt{441}}{2 \times 4} = -5$

et
$$x_2 = \frac{-19 + \sqrt{441}}{2 \times 4} = \frac{1}{4}$$

On a donc:

$$4x^{2} + 19x - 5 = 4(x - (-5))(x - \frac{1}{4}).$$

$$= (x+5)(4x-1)$$



Une vérification à l'aide de la calculatrice n'est jamais inutile ! On peut lire une valeur approchée des racines sur l'axe des abscisses.

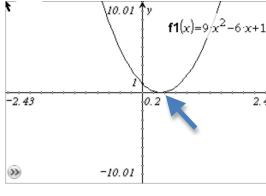
Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

b) On cherche les racines du trinôme $9x^2 - 6x + 1$:

Calcul du discriminant : $\Delta = (-6)^2 - 4 \times 9 \times 1 = 0$

La racine (double) est : $x_0 = -\frac{-6}{2 \times 9} = \frac{1}{3}$

On a donc: $9x^2 - 6x + 1 = 9\left(x - \frac{1}{3}\right)^2$ $= (3x - 1)^2$



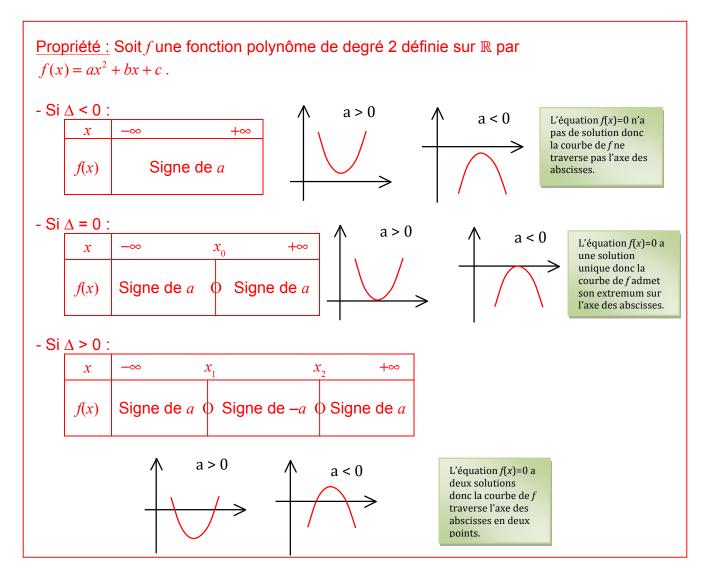
III. Signe d'un trinôme

- Vidéo https://youtu.be/sFNW9KVsTMY
- Vidéo https://youtu.be/pT4xtl2Yg2Q

Remarque préliminaire :

Pour une fonction polynôme de degré 2 définie par $f(x) = ax^2 + bx + c$:

- si a > 0, sa représentation graphique est une parabole tournée vers le haut : \bigvee
- si a < 0, sa représentation graphique est une parabole tournée vers le bas : f



Méthode: Résoudre une inéquation

Vidéo https://youtu.be/AEL4qKKNvp8

Résoudre l'inéquation suivante : $x^2 + 3x - 5 < -x + 2$

On commence par rassembler tous les termes dans le membre de gauche afin de pouvoir étudier le signe du trinôme.

$$x^2 + 3x - 5 < -x + 2$$
 équivaut à $x^2 + 4x - 7 < 0$

Le discriminant de $x^2 + 4x - 7$ est $\Delta = 4^2 - 4$ x 1 x (-7) = 44 et ses racines sont :

$$x_1 = \frac{-4 - \sqrt{44}}{2 \times 1} = -2 - \sqrt{11}$$
 et $x_2 = \frac{-4 + \sqrt{44}}{2 \times 1} = -2 + \sqrt{11}$

On obtient le tableau de signes :

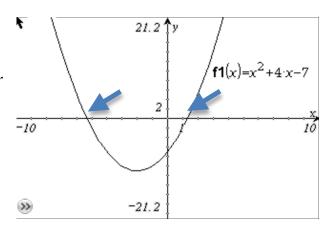
I							
x	-8		$-2 - \sqrt{11}$		$-2 + \sqrt{11}$	+∞	
f(x)		+	ϕ	_	0	+	

L'ensemble des solutions de l'inéquation $x^2 + 3x - 5 < -x + 2$ est donc

$$\left[-2 - \sqrt{11}; -2 + \sqrt{11} \right]$$
.

Une vérification à l'aide de la calculatrice n'est jamais inutile!

On peut lire une valeur approchée des racines sur l'axe des abscisses.



Un logiciel de calcul formel permet également de contrôler le résultat :

solve
$$(x^2+3\cdot x-5<-x+2,x)$$

- $(\sqrt{11}+2)< x<\sqrt{11}-2$

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales

| Www.maths-et-tiques.fr/index.php/mentions-legales**