LIMITES ET CONTINUITÉ (Partie 1)

I. Limite d'une fonction à l'infini

1) Limite finie à l'infini

Intuitivement:

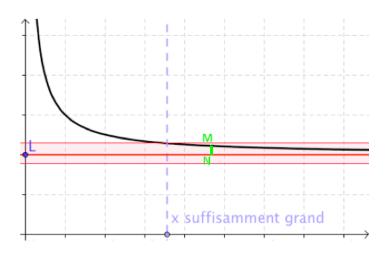
On dit que la fonction f admet pour limite L en $+\infty$ si f(x) est aussi proche de L que l'on veut pourvu que x soit suffisamment grand.

Exemple:

La fonction définie par $f(x) = 2 + \frac{1}{x}$ a pour limite 2 lorsque x tend vers $+\infty$.

En effet, les valeurs de la fonction se resserrent autour de 2 dès que x est suffisamment grand. La distance MN tend vers 0.

Si on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que x est suffisamment grand.



Définition:

On dit que la fonction f admet pour limite L en $+\infty$ si tout intervalle ouvert contenant L contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note : $\lim_{x \to \infty} f(x) = L$.

<u>Définitions</u>: - La droite d'équation y = L est <u>asymptote</u> à la courbe représentative de la fonction f en $+\infty$ si $\lim_{x \to \infty} f(x) = L$.

- La droite d'équation y = L est <u>asymptote</u> à la courbe représentative de la fonction f en $-\infty$ si $\lim_{x \to \infty} f(x) = L$.

Remarque:

Lorsque x tend vers $+\infty$, la courbe de la fonction "se rapproche" de son asymptote. La distance MN tend vers 0.

2) Limite infinie à l'infini

Intuitivement:

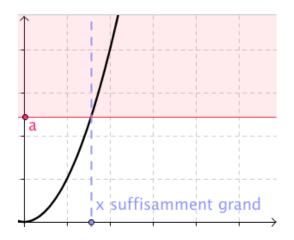
On dit que la fonction f admet pour limite $+\infty$ en $+\infty$ si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

Exemple:

La fonction définie par $f(x) = x^2$ a pour limite $+\infty$ lorsque x tend vers $+\infty$.

En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment grand.

Si on prend un réel a quelconque, l'intervalle a;+ ∞ contient toutes les valeurs de la fonction dès que a est suffisamment grand.

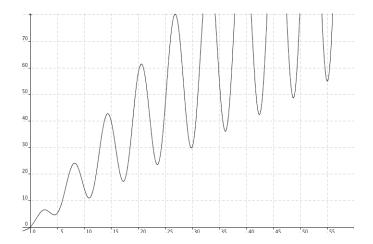


<u>Définitions</u>: - On dit que la fonction f <u>admet pour limite</u> $+\infty$ <u>en</u> $+\infty$ <u>si tout intervalle</u> a; $+\infty$, a réel, contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note : $\lim_{x\to +\infty} f(x) = +\infty$

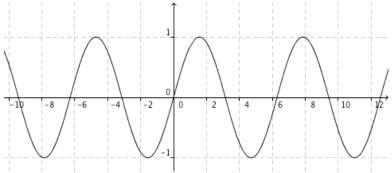
- On dit que la fonction f <u>admet pour limite</u> $-\infty$ <u>en</u> $+\infty$ si tout intervalle $]-\infty; b[$, b réel, contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note : $\lim_{x \to \infty} f(x) = -\infty$

Remarques:

- Une fonction qui tend vers $+\infty$ lorsque x tend vers $+\infty$ n'est pas nécessairement croissante.



- Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales.



3) Limites des fonctions usuelles

Propriétés:

- $-\lim_{x\to +\infty} x^2 = +\infty, \lim_{x\to +\infty} x^2 = +\infty$
- $-\lim_{x\to+\infty}x^3=+\infty, \lim_{x\to-\infty}x^3=-\infty$
- $-\lim_{x\to\infty} \sqrt{x} = +\infty$
- $-\lim_{x\to+\infty}\frac{1}{x}=0, \lim_{x\to-\infty}\frac{1}{x}=0$

II. Limite d'une fonction en un réel A

<u>Intuitivement</u>:

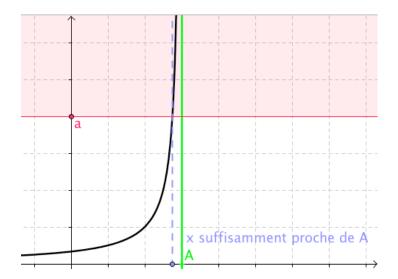
On dit que la fonction f admet pour limite $+\infty$ en A si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment proche de A.

Exemple:

La fonction représentée ci-dessous a pour limite $+\infty$ lorsque x tend vers A.

En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment proche de A.

Si on prend un réel a quelconque, l'intervalle a; $+\infty$ contient toutes les valeurs de la fonction dès que a est suffisamment proche de a.



<u>Définitions</u>: - On dit que la fonction f <u>admet pour limite</u> $+\infty$ <u>en</u> A si tout intervalle a; $+\infty$, a réel, contient toutes les valeurs de f(x) dès que x est suffisamment proche de A et on note : $\lim_{x \to A} f(x) = +\infty$

- On dit que la fonction f <u>admet pour limite</u> $-\infty$ <u>en A</u> si tout intervalle $]-\infty; b[$, b réel, contient toutes les valeurs de f(x) dès que x est suffisamment proche de A et on note : $\lim f(x) = -\infty$

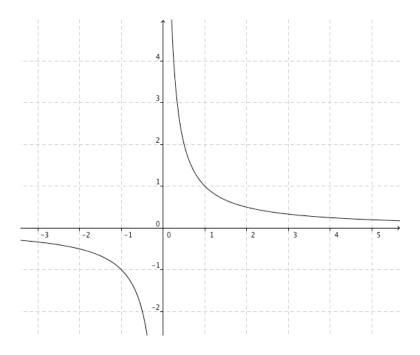
<u>Définition</u>: La droite d'équation x = A est <u>asymptote</u> à la courbe représentative de la fonction f si $\lim_{x \to A} f(x) = +\infty$ ou $\lim_{x \to A} f(x) = -\infty$.

Remarque:

Certaines fonctions admettent des limites différentes en un réel A selon x > A ou x < A.

Considérons la fonction inverse définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

- Si x < 0, alors f(x) tend vers $-\infty$ et on note : $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty$.
- Si x > 0, alors f(x) tend vers $+\infty$ et on note : $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$.



On parle de limite à gauche de 0 et de limite à droite de 0.

Déterminer graphiquement des limites d'une fonction :

Vidéo https://youtu.be/9nEJCL3s2eU

III. Opérations sur les limites

Vidéo https://youtu.be/at6pFx-Umfs

 α peut désigner $+\infty$, $-\infty$ ou un nombre réel.

1) Limite d'une somme

$\lim_{x \to \alpha} f(x) =$	L	L	L	+∞	-8	+∞
$\lim_{x \to \alpha} g(x) =$	L'	+8	-8	+8	8	8
$\lim_{x \to \alpha} (f(x) + g(x)) =$	L + L'	+∞	-8	+∞	-8	F.I.

2) Limite d'un produit

$\lim_{x \to \alpha} f(x) =$	L	L > 0	L < 0	L > 0	L < 0	+∞	-8	+∞	0
$ \lim_{x \to \alpha} g(x) = $	L'	+∞	+∞	-∞	-∞	+∞	-8	-8	+∞ ou -∞
$\lim_{x \to \alpha} \Big(f(x)g(x) \Big) =$	L L'	+∞		-∞	+∞	+∞	+∞		F.I.

3) Limite d'un quotient

$\lim_{x \to \alpha} f(x) =$	L	L	L > 0 ou +∞	L < 0 ou -∞	L > 0 ou +∞	L < 0 ou -∞	0	+∞	+∞		-8	+∞ ou -∞
$\lim_{x \to \alpha} g(x) =$	L'≠0		$0 \text{ avec} \\ g(x) > 0$		$0 \text{ avec} \\ g(x) < 0$		0	L' > 0	L' < 0	L'>0	L' < 0	+⊗ ou -8
$ \lim_{x \to \alpha} \frac{f(x)}{g(x)} = $	$\frac{L}{L'}$	0	+∞	-8	-8	\$	F.I.	\$	-8	-8	+8	F.I.

Exemple: $\lim_{x \to \infty} (x-5)(3+x^2)$?

$$\lim_{x \to -\infty} (x-5) = -\infty \text{ et } \lim_{x \to -\infty} (3+x^2) = +\infty$$

D'après la règle sur la limite d'un produit : $\lim_{x \to -\infty} (x-5)(3+x^2) = -\infty$

Remarque:

Comme pour les suites, on rappelle que les quatre formes indéterminées sont, par abus d'écriture :

"
$$\infty - \infty$$
", " $0 \times \infty$ ", " $\frac{\infty}{\infty}$ " et " $\frac{0}{0}$ ".

Méthode : Lever une forme indéterminée sur les fonctions polynômes et rationnelles

- Vidéo https://youtu.be/4NQbGdXThrk
- Vidéo https://youtu.be/8tAVa4itblc
- Vidéo https://youtu.be/pmWPfsQaRWI

Calculer: 1)
$$\lim_{x \to +\infty} \left(-3x^3 + 2x^2 - 6x + 1 \right)$$
 2) $\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5}$ 3) $\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1}$

1) Il s'agit d'une forme indéterminée du type " $-\infty$ +($+\infty$)+($-\infty$)"

Levons l'indétermination :

$$-3x^{3} + 2x^{2} - 6x + 1 = x^{3} \left(-3 + \frac{2}{x} - \frac{6}{x^{2}} + \frac{1}{x^{3}} \right)$$

Or
$$\lim_{x \to +\infty} \frac{2}{x} = \lim_{x \to +\infty} \frac{6}{x^2} = \lim_{x \to +\infty} \frac{1}{x^3} = 0$$
.

Donc par somme de limites
$$\lim_{x \to +\infty} \left(-3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} \right) = -3$$

Comme
$$\lim_{x \to +\infty} x^3 = +\infty$$
, on a par produit de limites $\lim_{x \to +\infty} x^3 \left(-3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} \right) = -\infty$.

Donc
$$\lim_{x \to +\infty} \left(-3x^3 + 2x^2 - 6x + 1 \right) = -\infty$$
.

2) En appliquant la méthode de la question 1) pour le numérateur et le dénominateur de la fonction rationnelle, cela nous conduit à une forme indéterminée du type " $\frac{\infty}{\infty}$ ".

Levons l'indétermination :

$$\frac{2x^2 - 5x + 1}{6x^2 - 5} = \frac{x^2}{x^2} \times \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}} = \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}}$$

Or
$$\lim_{x \to +\infty} \frac{5}{x} = \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{5}{x^2} = 0$$
.

Donc par somme de limites
$$\lim_{x \to +\infty} \left(2 - \frac{5}{x} + \frac{1}{x^2} \right) = 2$$
 et $\lim_{x \to +\infty} \left(6 - \frac{5}{x^2} \right) = 6$.

Donc comme quotient de limites
$$\lim_{x \to +\infty} \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}} = \frac{2}{6} = \frac{1}{3}$$
 et donc $\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5} = \frac{1}{3}$.

3) Il s'agit d'une forme indéterminée du type " $\frac{\infty}{\infty}$ ".

Levons l'indétermination :

$$\frac{3x^2 + 2}{4x - 1} = \frac{x^2}{x} \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = x \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}}.$$

Or
$$\lim_{x \to -\infty} \frac{2}{x^2} = \lim_{x \to -\infty} \frac{1}{x} = 0$$
.

Donc par somme de limites
$$\lim_{x \to -\infty} \left(3 + \frac{2}{x^2} \right) = 3$$
 et $\lim_{x \to -\infty} \left(4 - \frac{1}{x} \right) = 4$.

Donc comme quotient de limites
$$\lim_{x \to -\infty} \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = \frac{3}{4}$$
.

Or
$$\lim_{x \to -\infty} x = -\infty$$
, donc comme produit de limites $\lim_{x \to -\infty} x \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = -\infty$

Et donc
$$\lim_{x\to-\infty} \frac{3x^2+2}{4x-1} = -\infty$$
.

Méthode : Lever une forme indéterminée sur les fonctions avec des radicaux

- Vidéo https://youtu.be/n3XapvUfXJQ
- Vidéo https://youtu.be/y7Sbgkb9RoU

Calculer: 1) $\lim_{x \to +\infty} \left(\sqrt{x+1} - \sqrt{x} \right)$ 2) $\lim_{x \to \infty} \frac{\sqrt{x-1-2}}{x-5}$

2)
$$\lim_{x\to 5} \frac{\sqrt{x-1}-2}{x-5}$$

1) Il s'agit d'une forme indéterminée du type "∞-∞"

Levons l'indétermination à l'aide de l'expression conjuguée :

$$\sqrt{x+1} - \sqrt{x} = \frac{\left(\sqrt{x+1} - \sqrt{x}\right)\left(\sqrt{x+1} + \sqrt{x}\right)}{\sqrt{x+1} + \sqrt{x}} = \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}.$$

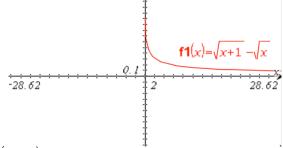
Or
$$\lim_{x \to +\infty} \sqrt{x+1} = \lim_{x \to +\infty} \sqrt{x} = +\infty$$

Donc par somme de limites $\lim_{x \to +\infty} \left(\sqrt{x+1} + \sqrt{x} \right) = +\infty$.

Et donc par quotient de limites $\lim_{x \to +\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0$.

D'où
$$\lim_{x\to+\infty} \left(\sqrt{x+1} - \sqrt{x} \right) = 0$$
.

On peut vérifier la pertinence du résultat en traçant la courbe représentative de la fonction $f(x) = \sqrt{x+1} - \sqrt{x}$.



2)
$$\lim_{x \to 5} (\sqrt{x-1} - 2) = \sqrt{5-1} - 2 = 0$$
 et $\lim_{x \to 5} (x-5) = 5 - 5 = 0$.

Il s'agit d'une forme indéterminée du type " $\frac{0}{2}$ ".

Levons l'indétermination à l'aide de l'expression conjuguée :

$$\frac{\sqrt{x-1}-2}{x-5} = \frac{\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}+2\right)}{\left(x-5\right)\left(\sqrt{x-1}+2\right)} = \frac{x-1-4}{\left(x-5\right)\left(\sqrt{x-1}+2\right)} = \frac{x-5}{\left(x-5\right)\left(\sqrt{x-1}+2\right)} = \frac{1}{\sqrt{x-1}+2}$$

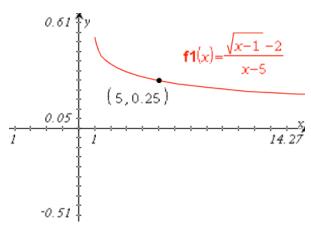
Or $\lim_{x \to 5} \sqrt{x-1} = \sqrt{5-1} = 2$ donc par somme de limites $\lim_{x \to 5} \sqrt{x-1} + 2 = 2 + 2 = 4$.

Donc par quotient de limites, on a $\lim_{x\to 5} \frac{1}{\sqrt{x-1}+2} = \frac{1}{4}$

Et donc
$$\lim_{x\to 5} \frac{\sqrt{x-1}-2}{x-5} = \frac{1}{4}$$
.

En traçant à l'aide de la calculatrice la fonction $f(x) = \frac{\sqrt{x-1-2}}{x-5}$, il est possible de vérifier la pertinence de la solution trouvée en plaçant un point sur la courbe.

Attention cependant, la calculatrice ne fait pas apparaître que la fonction f n'est pas définie en 5.



Méthode : Déterminer une asymptote

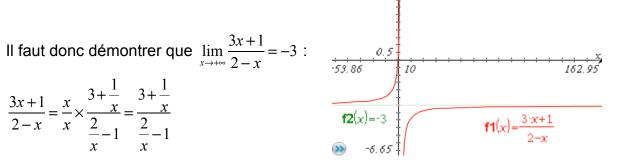
Vidéo https://youtu.be/0LDGK-QkL80

Vidéo https://youtu.be/pXDhrx-nMto

1) Soit f la fonction définie sur $\mathbb{R} \setminus \{2\}$ par $f(x) = \frac{3x+1}{2-x}$.

Démontrer que la droite d'équation y = -3 est asymptote horizontale à la courbe représentative de f en $+\infty$.

$$\frac{3x+1}{2-x} = \frac{x}{x} \times \frac{3+\frac{1}{x}}{\frac{2}{x}-1} = \frac{3+\frac{1}{x}}{\frac{2}{x}-1}$$



Or
$$\lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty} \frac{2}{x} = 0$$
 donc $\lim_{x \to +\infty} \left(3 + \frac{1}{x} \right) = 3$ et $\lim_{x \to +\infty} \left(\frac{2}{x} - 1 \right) = -1$.

Et donc par quotient de limites $\lim_{x \to +\infty} \frac{3 + \frac{1}{x}}{\frac{2}{-1}} = \frac{3}{-1} = -3$

Et donc $\lim_{x\to +\infty} f(x) = -3$.

2) Soit g la fonction définie sur $\mathbb{R} \setminus \{4\}$ par $g(x) = \frac{2x}{x-4}$.

Démontrer que la droite d'équation x = 4 est asymptote verticale à la courbe représentative de g.

Il faut donc démontrer que la limite la fonction g possède une limite infinie en 4.

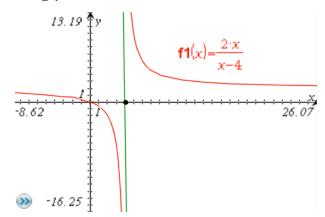
$$-\lim_{\substack{x\to 4\\x<4}} (x-4) = 0 \text{ et } \lim_{x\to 4} 2x = 8.$$

Donc
$$\lim_{\substack{x \to 4 \\ x < 4}} \frac{2x}{x - 4} = -\infty \text{ car } x - 4 < 0.$$

$$-\lim_{\substack{x\to 4\\x>4}} (x-4) = 0 \text{ et } \lim_{x\to 4} 2x = 8.$$

Donc
$$\lim_{\substack{x \to 4 \\ x > 4}} \frac{2x}{x - 4} = +\infty \text{ car } x - 4 > 0.$$

On en déduit que la droite d'équation x = 4 est asymptote verticale à la courbe représentative de g.



Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales