# CONDITIONNEMENT (Partie 1)

### I. Exemple d'introduction

## Vidéo https://youtu.be/JEL4hxtnw0Q

Un laboratoire pharmaceutique a réalisé des tests sur 800 patients atteints d'une maladie bénigne. Certains sont traités avec le médicament A, d'autres avec le médicament B. Le tableau présente les résultats de l'étude :

|           | Médicament A | Médicament B | Total |
|-----------|--------------|--------------|-------|
| Guéri     | 383          | 291          | 674   |
| Non guéri | 72           | 54           | 126   |
| Total     | 455          | 345          | 800   |

1) On choisit au hasard un patient et on considère les évènements suivants :

A: « Le patient a pris le médicament A. »

G: « Le patient est guéri. »

#### On a alors:

La probabilité qu'un patient soit traité avec le médicament A est égale à  $P(A) = \frac{455}{800}$ .

La probabilité qu'un patient soit guéri est égale à  $P(G) = \frac{674}{800}$ 

La probabilité qu'un patient soit guéri et qu'il soit traité par le médicament A est égale à  $P(G \cap A) = \frac{383}{800}$ .

2) On choisit maintenant au hasard un <u>patient guéri</u>. La probabilité que ce patient ait pris le médicament A sachant qu'il est guéri se note  $P_G(A)$  et est égale à  $P_G(A) = \frac{383}{674}$ .

On constate que 
$$\frac{P(G \cap A)}{P(G)} = \frac{383/800}{674/800} = \frac{383}{674} = P_G(A)$$
.

#### II. Probabilité conditionnelle

<u>Définition</u>: Soit *A* et *B* deux événements avec  $P(A) \neq 0$ .

On appelle <u>probabilité conditionnelle de B sachant A</u>, la probabilité que l'événement B se réalise sachant que l'événement A est réalisé. Elle est notée  $P_{A}(B)$  et est

définie par : 
$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

#### Exemple:

## Vidéo https://youtu.be/SWmkdKxXf\_I

On tire une carte au hasard dans un jeu de 32 cartes.

Soit A l'événement "Le résultat est un pique".

Soit B l'événement "Le résultat est un roi".

Donc  $A \cap B$  est l'événement "Le résultat est le roi de pique".

Alors: 
$$P(A) = \frac{8}{32} = \frac{1}{4}$$
 et  $P(A \cap B) = \frac{1}{32}$ .

Donc la probabilité que le résultat soit un roi sachant qu'on a tiré un pique est :

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{1}{32} : \frac{1}{4} = \frac{1}{8}$$
.

On peut retrouver intuitivement ce résultat. En effet, sachant que le résultat est un pique, on a une chance sur 8 d'obtenir le roi.

#### Remarque:

La probabilité conditionnelle suit les règles et lois de probabilités vues dans les classes antérieures. On a en particulier :

Propriétés : Soit A et B deux événements avec  $P(A) \neq 0$ .

- $-0 \le P_A(B) \le 1$
- $-P_{A}(\overline{B}) = 1 P_{A}(B)$
- $-P(A \cap B) = P(A) \times P_A(B)$



Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

\*\*www.maths-et-tiques.fr/index.php/mentions-legales\*\*

| Www.maths-et-tiques.fr/index.php/mentions-legales\*\*