

FICHE n°0 : PROGRAMMER LES FONCTIONS

La syntaxe d'une fonction :

def nom_fonction(paramètre1,paramètre2,...)
Instructions

return Résultat

Dans la console, on appellera : nom_fonction(...)

Syntaxe des autres instructions utiles dans cette fiche :

Langage naturel	Python
A au carré	A**2
Racine carrée de A	sqrt(A) Importer au préalable les fonctions mathématiques en saisissant : from math import*
Quotient de la division euclidienne de A par B	A//B
Reste de la division euclidienne de A par B	A%B

Exercice 1:

Pour définir avec Python la fonction f telle que f(x) = 2x + 3, il faut saisir :

- 1) Pour obtenir l'image de 6 par la fonction f, saisir dans la console : f(6)
- 2) Déterminer de même les images de 0, 1, -3 et -8,5 par la fonction f. -8,5 se saisit : -8,5
- 3) Modifier le programme pour obtenir les images de -5, 14 et 145 par la fonction g définie par : $g(x) = -2x^2 + 3x 7$.

Exercice 2:

Soit la fonction f définie sur [0; 9] par $f(x) = \sqrt{9 - x}$.

Pour utiliser la fonction racine carrée (**sqrt**), il faut au préalable importer le module **math** dans Python. Pour cela, saisir au début du programme :

- 1) Écrire un programme permettant d'afficher l'image d'un nombre par f. Exécuter alors ce programme pour obtenir les images par f de toutes les valeurs de x entières.
- 2) Utiliser les résultats précédents pour représenter graphiquement la fonction f dans un repère.
- 3) Reprendre les questions précédentes avec la fonction g définie sur [3;11] par : $g(x) = \sqrt{2x-6}$

Exercice 3:

1) Compléter le programme suivant permettant de calculer la vitesse en km/h lorsqu'on donne la distance parcourue en kilomètre et le temps en heure.

- 2) Dans chaque cas, utiliser le programme pour calculer la vitesse moyenne du véhicule :
 - a) Un cycliste a parcouru 80 km en 2h30.
 - b) Un avion met 3h45 pour une distance de 2000 km.
 - c) Une automobile se rend de Strasbourg à Paris (490 km) en 5h20.

Exercice 4:

Écrire un programme affichant simultanément le quotient et le reste de la division euclidienne de deux nombres.

Pour afficher simultanément deux résultats avec Python, il faut saisir :

return Résultat1, Résultat2

Tester ce programme pour plusieurs divisions.

Exercice 5:

Écrire un programme permettant de vérifier si trois nombres peuvent être les longueurs des côtés d'un triangle rectangle. Trouver alors de tels triplets.

On rappelle la formule de Pythagore :

ABC est un triangle rectangle si $AB^2 + BC^2 = AC^2$.

Exercice 6:

Écrire un programme affichant le volume d'un cône en fonction de sa hauteur et du rayon de sa base.

Tester ce programme pour plusieurs cônes.

Exercice 7:

C'est la période des soldes! Écrire un programme affichant le prix réduit en fonction du prix de départ et de la réduction accordée en %.

Appliquer ce programme pour calculer les prix réduits des articles ci-dessous :

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales