LES SUITES - Chapitre 2/2

Tout le cours en vidéo : https://youtu.be/MJv7_pkFcdA

Partie 1: Limites et comparaison

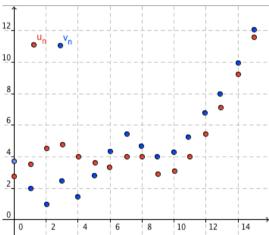
1) Théorèmes de comparaison

Théorème 1:

Soit deux suites (u_n) et (v_n) .

Si, à partir d'un certain rang, on a
$$\begin{cases} u_n \leq v_n \\ \lim_{n \to +\infty} u_n = +\infty \end{cases} \text{ alors } \lim_{n \to +\infty} v_n = +\infty.$$

Par abus de langage, on pourrait dire que la suite (u_n) pousse la suite (v_n) vers $+\infty$ à partir d'un certain rang.



Démonstration au programme :

Vidéo https://youtu.be/qIBlhdofYFI

Soit un nombre réel a.

- $\lim_{n\to+\infty}u_n=+\infty$, donc l'intervalle]a; $+\infty[$ contient tous les termes de la suite à partir d'un certain rang que l'on note n_1 .

On a donc pour tout $n \ge n_1$, $a < u_n$.

- A partir d'un certain rang, que l'on note n_2 , on a $u_n \leq v_n$.
- Ainsi pour tout $n \ge \max(n_1; n_2)$, on a : $a < u_n \le v_n$.

On en déduit que l'intervalle a; $+\infty$ contient tous les termes de la suite (v_n) à partir du rang max $(n_1; n_2)$.

Et donc $\lim_{n\to+\infty} v_n = +\infty$.

Théorème 2:

Soit deux suites (u_n) et (v_n) .

Si, à partir d'un certain rang, on a :
$$\begin{cases} u_n \geq v_n \\ \lim_{n \to +\infty} u_n = -\infty \text{ alors } \lim_{n \to +\infty} v_n = -\infty. \end{cases}$$

Méthode: Déterminer une limite par comparaison

Vidéo https://youtu.be/iQhh46LupN4

Déterminer la limite suivante : $\lim_{n \to +\infty} n^2 + (-1)^n$

Correction

On a:

On a .
$$(-1)^n \geq -1 \text{ donc}:$$

$$n^2 + (-1)^n \geq n^2 - 1$$
 Or, $\lim_{n \to +\infty} n^2 - 1 = +\infty$, donc par comparaison, $\lim_{n \to +\infty} n^2 + (-1)^n = +\infty$.

2) Théorème d'encadrement

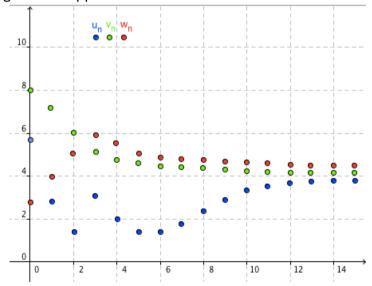
Théorème des gendarmes :

Soit trois suites (u_n) , (v_n) et (w_n) .

Si, à partir d'un certain rang, on a :
$$\begin{cases} u_n \leq v_n \leq w_n \\ \lim_{n \to +\infty} u_n = L \\ \lim_{n \to +\infty} w_n = L \end{cases} \text{ alors } \lim_{n \to +\infty} v_n = L.$$

Par abus de langage, on pourrait dire que les suites (u_n) et (w_n) (les gendarmes) se resserrent autour de la suite (v_n) à partir d'un certain rang pour la faire converger vers la même limite.

Ce théorème est également appelé le théorème du sandwich.



Démonstration :

Soit un intervalle ouvert *I* contenant *L*.

- $\lim_{n\to +\infty}u_n=L$, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n_1 .
- $\lim_{n \to +\infty} w_n = L$, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n_2 .

- A partir d'un certain rang, que l'on note n_3 , on a $u_n \le v_n \le w_n$.
- Ainsi pour tout $n \ge \max(n_1; n_2; n_3)$, l'intervalle I contient tous les termes de la suite (v_n) .

Et donc $\lim_{n\to+\infty}v_n=L$.

Méthode: Déterminer une limite par encadrement

Vidéo https://youtu.be/OdzYjz_vQbw

Déterminer la limite suivante : $\lim_{n \to +\infty} 1 + \frac{\sin(n)}{n}$

Correction

On a : $-1 \le \sin(n) \le 1$, donc :

$$-\frac{1}{n} \le \frac{\sin(n)}{n} \le \frac{1}{n}$$

Or: $\lim_{n\to+\infty}-\frac{1}{n}=\lim_{n\to+\infty}\frac{1}{n}=0$ donc d'après le théorème des gendarmes: $\lim_{n\to+\infty}\frac{\sin(n)}{n}=0$

 $\text{Et donc } \lim_{n \to +\infty} 1 + \frac{\sin(n)}{n} = 1.$

<u>Remarque</u>: On utilise le théorème de comparaison pour démontrer une limite infinie et le théorème d'encadrement pour une limite finie.

Partie 2 : Suites majorées, minorées, bornées

1) Définitions :

Définitions:

- La suite (u_n) est **majorée** s'il existe un réel M tel que pour tout entier naturel n, on a : $u_n \le M$.
- La suite (u_n) est **minorée** s'il existe un réel m tel que pour tout entier naturel n, on a : $u_n \ge m$.
- La suite (u_n) est **bornée** si elle est à la fois majorée et minorée.

Exemples:

- Les suites de terme général $\cos(n)$ ou $(-1)^n$ sont bornées car minorées par -1 et majorées par 1.
- La suite de terme général n^2 est minorée par 0. Mais elle n'est pas majorée.

Méthode : Démontrer qu'une suite est majorée ou minorée

Vidéo https://youtu.be/F1u_BVwiW8E

On considère la suite (u_n) définie pour tout entier naturel n par $u_{n+1}=\frac{1}{3}u_n+2$ et $u_0=2$. Démontrer par récurrence que la suite (u_n) est majorée par 3.

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Correction

• Initialisation:

$$u_0 = 2 < 3$$

La propriété est donc vraie pour n = 0.

Hérédité :

- Hypothèse de récurrence :

Supposons que la propriété soit vraie pour un certain entier $k: u_k < 3$.

- <u>Démontrons que</u> : la propriété est vraie au rang k+1 : $u_{k+1} < 3$.

On a:
$$u_k < 3$$

Donc: $\frac{1}{3}u_k < \frac{1}{3} \times 3$
 $\frac{1}{3}u_k + 2 < \frac{1}{3} \times 3 + 2$
Soit: $u_{k+1} < 3$

• Conclusion:

La propriété est vraie pour n=0 et héréditaire à partir de ce rang. D'après le principe de récurrence, elle est vraie pour tout entier naturel n, soit : $u_n < 3$. Donc (u_n) est majorée.

2) Convergence des suites monotones

Propriété : Si une suite est croissante et admet pour limite L, alors elle est majorée par L.

Démonstration par l'absurde :

Démontrons par l'absurde en supposant le contraire, soit : « Il existe un rang p, tel que $u_p > L$. »

- L'intervalle ouvert]L-1 ; $u_p[$ contient L.

Or, par hypothèse, $\lim_{n\to +\infty}u_n=L$. Donc l'intervalle]L-1; $u_p[$ contient tous les termes de la suite (u_n) à partir d'un certain rang (1).

- Comme (u_n) est croissante : $u_n \ge u_p$ pour n > p.

Donc si n > p, alors $u_n \notin]L-1$; $u_p[$ (2).

(1) et (2) sont contradictoires, on en déduit qu'il n'existe pas $p\in\mathbb{N}$, tel que $u_p>L$.

Et donc la suite (u_n) est majorée par L.

Théorème de convergence monotone :

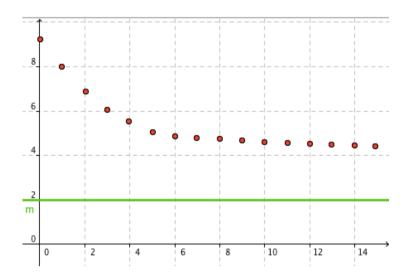
- Si une suite est croissante et majorée alors elle est convergente.
- Si une suite est décroissante et minorée alors elle est convergente.

Remarque:

Ce théorème permet de s'assurer de la convergence mais ne donne pas la limite.

⁻ Admis -

Dans l'exemple ci-dessous, la suite est décroissante et minorée par 2. Cela prouve que la limite de la suite est supérieure à 2 mais n'est pas nécessairement égale à 2. Elle peut être égale à 4!



Méthode : Utiliser le théorème de convergence monotone

Vidéo https://youtu.be/gO-MQUIBAfo

On considère la suite (u_n) définie pour tout entier naturel n par $u_{n+1} = \frac{1}{3}u_n + 2$ et $u_0 = 2$. Démontrer que la suite (u_n) est convergente.

Correction

On a démontré dans le chapitre « LES SUITES – Chapitre 1/2 Partie 1 » que la suite (u_n) est croissante.

On a démontré dans la méthode précédente que la suite (u_n) est majorée par 3. La suite (u_n) est donc croissante et majorée, d'après le théorème de convergence monotone, on en déduit que la suite (u_n) est convergente.

Corollaire:

- 1) Si une suite est croissante et non majorée alors elle tend vers $+\infty$.
- 2) Si une suite est décroissante et non minorée alors elle tend vers $-\infty$.

<u>Démonstration (du 1) au programme :</u>

Vidéo https://youtu.be/rttQIYOKCRQ

Soit un réel a.

Comme (u_n) n'est pas majorée, il existe un entier p tel que $u_p > a$.

La suite (u_n) est croissante donc pour tout n > p, on a : $u_n \ge u_p$.

Donc pour tout n > p, on a : $u_n > a$.

Et donc à partir d'un certain rang p, tous les termes de la suite appartiennent à l'intervalle a; $+\infty$ [.

On en déduit que $\lim_{n\to +\infty}u_n=+\infty.$

Partie 3 : Comportement à l'infini d'une suite géométrique

1) Rappel

<u>Propriété</u>: Soit (u_n) une **suite géométrique** de raison q et de premier terme u_0 . Alors, pour tout entier n, on a :

- $u_{n+1} = q \times u_n$ (forme de récurrence)
- $u_n = u_0 \times q^n$ (forme explicite).

Exemple : Soit (u_n) une suite géométrique de raison -3 et de premier terme 5.

On a : $u_{n+1} = -3u_n$ et $u_n = 5 \times (-3)^n$.

2) Limites

q	$q \le -1$	-1 < q < 1	q = 1	q > 1
$\lim_{n\to+\infty}q^n$	Pas de limite	0	1	+∞

Démonstration au programme dans le cas q > 1:

Vidéo https://youtu.be/aSBGk_GEEew

<u>Prérequis</u>: Pour tout entier naturel n, on a : $(1+a)^n \ge 1 + na$ (inégalité de Bernoulli), démontrée dans le chapitre « LES SUITES (Partie 1) Paragraphe I. ».

On suppose que q > 1, alors on peut poser q = a + 1 avec a > 0.

 $q^n = (1+a)^n \ge 1 + na$, d'après l'inégalité de Bernoulli.

Or $\lim_{n \to \infty} 1 + na = +\infty$ car a > 0.

Donc d'après le théorème de comparaison : $\lim_{n\to\infty} q^n = +\infty$.

<u>Exemple</u>: La suite de terme général -5×4^n a pour limite $-\infty$ car $\lim_{n \to +\infty} 4^n = +\infty$.

Méthode: Étudier un phénomène modélisable par une suite

- Vidéo https://youtu.be/6-vFnQ6TghM
- Vidéo https://youtu.be/0CNt_fUuwEY

Un investisseur dépose 5 000 € sur un compte rémunéré à 3 % par an. Chaque année suivante, il dépose 300 € de plus sur ce compte.

On note (u_n) la somme épargnée à l'année n.

On a alors : $u_{n+1} = 1.03u_n + 300$ et $u_0 = 5000$.

- 1) Calculer u_1 et u_2 .
- 2) Prouver que la suite (v_n) définie pour tout entier n par $v_n = u_n + 10\,000$ est géométrique et donner sa raison et son premier terme.
- 3) Exprimer v_n en fonction de n.
- 4) En déduire u_n en fonction de n. Puis calculer u_{10} .
- 5) Étudier les variations de (u_n) .

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Correction

1)
$$u_1 = 1,03u_0 + 300 = 5450$$

 $u_2 = 1,03u_1 + 300 = 5913,5$

2)
$$v_{n+1} = u_{n+1} + 10\,000$$

= $1,03u_n + 300 + 10\,000$
= $1,03u_n + 10\,300$
= $1,03(v_n - 10\,000) + 10\,300$, car $v_n = u_n + 10\,000$
= $1,03v_n - 10\,300 + 10\,300$
= $1,03v_n$

Donc (v_n) est une suite géométrique de raison 1,03 et de premier terme $v_0 = u_0 + 10\,000 = 5\,000 + 10\,000 = 15\,000.$

3) Pour tout *n*, on a : $v_n = 15\,000 \times 1,03^n$.

4)
$$u_n = v_n - 10\ 000 = 15\ 000 \times 1,03^n - 10\ 000$$

On a alors : $u_{10} = 15\ 000 \times 1,03^{10} - 10\ 000 \approx 10\ 158,75$

5)
$$u_{n+1} - u_n = 15\ 000 \times 1,03^{n+1} - 10\ 000 - (15\ 000 \times 1,03^n - 10\ 000)$$

= $15\ 000 \times (1,03^{n+1} - 1,03^n)$
= $15\ 000 \times 1,03^n \times (1,03 - 1)$
= $450 \times 1,03^n > 0$

Donc la suite (u_n) est strictement croissante.

3) Somme des termes d'une suite géométrique

Propriété $\underline{:} n$ est un entier naturel non nul et q un réel différent de 1 alors on a :

$$1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

Méthode: Utiliser la limite d'une suite géométrique

Vidéo https://youtu.be/XTftGHfnYMw

Déterminer, si elles existent, les limites suivantes :

a)
$$\lim_{n\to+\infty}\frac{(-2)^n}{3}$$

b)
$$\lim_{n \to \infty} 2^n - 3^n$$

a)
$$\lim_{n \to +\infty} \frac{(-2)^n}{3}$$
 b) $\lim_{n \to +\infty} 2^n - 3^n$ c) $\lim_{n \to +\infty} 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n$

Correction

$$a) \lim_{n \to +\infty} \frac{(-2)^n}{3} = ?$$

 $((-2)^n)$ est une suite géométrique de raison -2 strictement inférieure à -1. Donc $((-2)^n)$ ne possède pas de limite.

Et donc $\lim_{n\to+\infty} \frac{(-2)^n}{3}$ n'existe pas.

b)
$$\lim_{n \to +\infty} 2^n - 3^n = ?$$

$$\bullet \begin{cases} \lim_{n \to +\infty} 2^n = +\infty \\ \lim_{n \to +\infty} 3^n = +\infty \end{cases}$$

Il s'agit d'une forme indéterminée du type " $\infty - \infty$ ".

• Levons l'indétermination :

$$2^{n} - 3^{n} = 3^{n} \left(\frac{2^{n}}{3^{n}} - 1 \right) = 3^{n} \left(\left(\frac{2}{3} \right)^{n} - 1 \right)$$

• Or $\lim_{n\to+\infty}\left(\frac{2}{3}\right)^n=0$, comme limite d'une suite géométrique de raison $\frac{2}{3}$ avec $-1<\frac{2}{3}<1$.

Donc:
$$\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n - 1 = -1.$$

• $\lim_{n\to+\infty} 3^n = +\infty$, comme limite d'une suite géométrique de raison 3>1.

Donc, comme limite d'un produit : $\lim_{n \to +\infty} 3^n \left(\left(\frac{2}{3} \right)^n - 1 \right) = -\infty$

Soit :
$$\lim_{n \to +\infty} 2^n - 3^n = -\infty.$$

c)
$$\lim_{n \to +\infty} 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n$$

On reconnaît la somme des premiers termes d'une suite géométrique de raison $\frac{1}{2}$ et de premier terme 1. Donc :

$$1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 2 \times \left(1 - \left(\frac{1}{2}\right)^{n+1}\right)$$

Or $\lim_{n\to+\infty}\left(\frac{1}{2}\right)^{n+1}=0$, comme limite d'une suite géométrique de raison $\frac{1}{2}$ avec $-1<\frac{1}{2}<1$.

Donc:
$$\lim_{n \to +\infty} 1 - \left(\frac{1}{2}\right)^{n+1} = 1.$$

Et donc :
$$\lim_{n \to +\infty} 2\left(1 - \left(\frac{1}{2}\right)^{n+1}\right) = 2.$$

Soit:
$$\lim_{n \to +\infty} 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n = 2.$$

