LOIS DISCRÈTES - Chapitre 1/2

Tout le cours sur la loi binomiale en vidéo : https://youtu.be/xMmfPUoBTtM

Partie 1 : Loi uniforme discrète

Exemple:

1) On lance un dé et on appelle X le résultat du lancer.

Alors
$$P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = P(X = 5) = P(X = 6) = \frac{1}{6}$$
.
On dira que X suit une loi uniforme sur $\{1, 2, 3, 4, 5, 6\}$.

2) On lance une pièce de monnaie. La probabilité d'obtenir « pile » est égale à la probabilité d'obtenir « face », toutes deux égales à $\frac{1}{2}$.

Dans ce cas, X suit également une loi uniforme.

<u>Définition</u>: On dit que X suit une **loi uniforme discrète** sur l'ensemble $\{1, ..., n\}$ si pour tout entier i de $\{1, ..., n\}$, on a : $P(X = i) = \frac{1}{n}$.

Propriété : Soit X une variable aléatoire qui suit la loi uniforme discrète de paramètre n, alors : $E(X) = \frac{n+1}{2}$.

$$E(X) = 1 \times \frac{1}{n} + 2 \times \frac{1}{n} + 3 \times \frac{1}{n} + \dots + n \times \frac{1}{n}$$

$$= (1 + 2 + 3 + \dots + n) \times \frac{1}{n}$$

$$= \frac{n(n+1)}{2} \times \frac{1}{n} = \frac{n+1}{2}$$

Partie 2 : Répétition d'expériences indépendantes

Exemples:

- 1) On lance un dé plusieurs fois de suite et on note à chaque fois le résultat. On répète ainsi la même expérience (lancer un dé) et les expériences sont indépendantes l'une de l'autre (un lancer n'influence pas le résultat d'un autre lancer).
- 2) Une urne contient 2 boules blanches et 3 boules noires. On tire au hasard une boule et on la remet dans l'urne.

On répète cette expérience 10 fois de suite. Ces expériences sont identiques et indépendantes.

Définition : Plusieurs expériences sont identiques et indépendantes si :

- elles ont les mêmes issues,
- les probabilités de chacune des issues ne changent pas d'une expérience à l'autre.

<u>Propriété</u>: On considère une expérience aléatoire à deux issues A et B avec les probabilités P(A) et P(B).

Si on répète l'expérience deux fois de suite de façon indépendante :

- la probabilité d'obtenir l'issue A suivie de l'issue B est égale à P(A) × P(B),
- la probabilité d'obtenir l'issue B suivie de l'issue A est égale à P(B) × P(A),
- la probabilité d'obtenir deux fois l'issue A est égale à P(A)²,
- la probabilité d'obtenir deux fois l'issue B est égale à P(B)².

Méthode: Représenter la répétition d'expériences identiques et indépendantes dans un arbre

Vidéo https://youtu.be/e7jH8a1cDtg

On considère l'expérience suivante :

Une urne contient 3 boules blanches et 2 boules rouges. On tire au hasard une boule et on la remet dans l'urne. On répète l'expérience deux fois de suite.

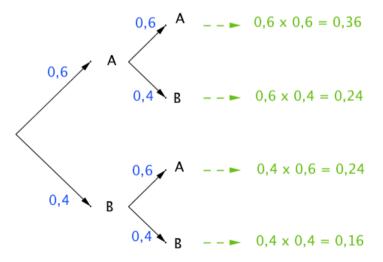
- 1) Représenter l'ensemble des issues de ces expériences dans un arbre.
- 2) Déterminer la probabilité :
 - a) d'obtenir deux boules blanches;
 - b) une boule blanche et une boule rouge;
 - c) au moins une boule blanche.

Correction

1) On note A l'issue "On tire une boule blanche" et B l'issue "On tire une boule rouge".

$$P(A) = \frac{3}{5} = 0.6 \text{ et } P(B) = \frac{2}{5} = 0.4.$$

On résume les issues de l'expérience dans un arbre de probabilité :



- 2) a) Obtenir deux boules blanches correspond à l'issue (A; A):
 - $P_1 = 0.6 \times 0.6 = 0.36$ (d'après l'arbre).
 - b) Obtenir une boule blanche et une boule rouge correspond aux issues (A ; B) et (B ; A) : $P_2 = 0.24 + 0.24 = 0.48$.
 - c) Obtenir au moins une boule blanche correspond aux issues

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

(A; B), (A; A) et (B; A):

$$P_3 = 0.24 + 0.36 + 0.24 = 0.84$$
.

Partie 3 : Épreuve de Bernoulli

<u>Définition</u>: Une **épreuve de Bernoulli** est une expérience aléatoire à deux issues que l'on peut nommer "succès" ou "échec".

Exemples:

- 1) Le jeu du pile ou face : On considère par exemple comme succès "obtenir pile" et comme échec "obtenir face".
- 2) On lance un dé et on considère par exemple comme succès "obtenir un six" et comme échec "ne pas obtenir un six".

<u>Définition</u>: Une **loi de Bernoulli** est la loi de probabilité d'une épreuve de Bernoulli qui suit le schéma suivant :

- la probabilité d'obtenir un succès est égale à p,
- la probabilité d'obtenir un échec est égale à 1-p.

p est appelé le paramètre de la loi de Bernoulli.

<u>Exemples</u>: Dans les exemples présentés plus haut :

1)
$$p = \frac{1}{2}$$
 2) $p = \frac{1}{6}$

Convention:

Au succès, on peut associer le nombre 1 et à l'échec, on peut associer le nombre 0. Soit la variable aléatoire X qui suit une loi de Bernoulli de paramètre p.

Dans ce cas, la loi de probabilité de X peut être présentée dans le tableau :

x_i	1	0
$P(X=x_i)$	p	1 - p

<u>Propriété</u>: Soit *X* une variable aléatoire qui suit la loi de Bernoulli de paramètre *p*, alors :

$$E(X) = p$$
 $V(X) = p(1-p)$ $\sigma(X) = \sqrt{p(1-p)}$

Démonstrations :

$$-E(X) = 1 \times P(X = 1) + 0 \times P(X = 0)$$

$$= 1 \times p + 0 \times (1 - p)$$

$$= p$$

$$-V(X) = (1 - E(X))^{2} \times P(X = 1) + (0 - E(X))^{2} \times P(X = 0)$$

$$= (1 - p)^{2} \times p + (0 - p)^{2} \times (1 - p)$$

$$= p - 2p^{2} + p^{3} + p^{2} - p^{3}$$

$$= p - p^{2}$$

$$= p(1 - p)$$

$$-\sigma(X) = \sqrt{V(X)} = \sqrt{p(1 - p)}$$

Partie 4 : Schéma de Bernoulli, loi binomiale

1) Schéma de Bernoulli

<u>Définition</u>: Un **schéma de Bernoulli** est la répétition de n épreuves de Bernoulli identiques et indépendantes pour lesquelles la probabilité du succès est p.

Exemple : La répétition de 10 lancers d'une pièce de monnaie est un schéma de Bernoulli de paramètres n=10 et $p=\frac{1}{2}$.

2) Loi binomiale

<u>Définition</u>: On réalise un schéma de Bernoulli composé de n épreuves de Bernoulli identiques et indépendantes.

Une **loi binomiale** est une loi de probabilité définie sur l'ensemble $\{0; 1; 2; ...; n\}$ qui donne le nombre de succès de l'expérience.

Remarque : n et p sont les paramètres de la loi binomiale.

Méthode: Utiliser un arbre pondéré avec la loi binomiale

Vidéo https://youtu.be/b18 r8r4K2s

On considère un jeu de 4 cartes dont une carte est un as.

On tire trois fois de suite une carte en remettant à chaque fois la carte tirée dans le jeu.

On considère comme succès l'évènement « Obtenir un as ».

Soit X la variable aléatoire qui compte le nombre de succès.

Calculer P(X = 2) en utilisant un arbre pondéré.

Correction

On répète 3 fois de suite des épreuves de Bernoulli identiques et indépendantes.

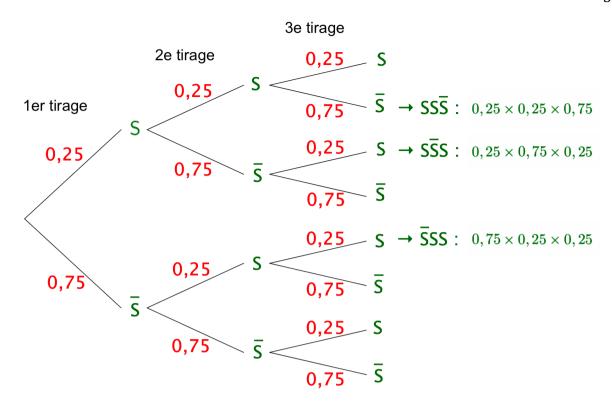
Pour chaque épreuve la probabilité du succès (tirer un as) est égale à $\frac{1}{4} = 0.25$.

Donc la probabilité d'un échec est égale à 0,75.

La variable aléatoire X suit la loi binomiale de paramètres n=3 et p=0.25.

On cherche à calculer la probabilité d'obtenir 2 succès parmi 3 tirages.

On construit alors un arbre pondéré présentant les données de l'énoncé :



On compte 3 triplets formés de deux succès : $(S; S; \bar{S})$, $(S; \bar{S}; S)$ et $(\bar{S}; S; S)$. Et on a : $P(S; S; \bar{S}) = P(S; \bar{S}; S) = P(\bar{S}; S; S) = 0.25 \times 0.25 \times 0.75 = 0.25^2 \times 0.75$.

Et donc $P(X = 2) = 3 \times 0.25^2 \times 0.75 = 0.140 625$.

3) Avec la calculatrice ou un tableur

Méthode: Utiliser une loi binomiale

- Vidéo https://youtu.be/7k4ZYdfWEY8 -Tuto TI
- Vidéo https://youtu.be/69IQIJ7lyww Tuto Casio
- Vidéo https://youtu.be/clrAMXKrPV4 Tuto HP

On lance 7 fois de suite un dé à 6 faces.

Soit X la variable aléatoire égale au nombre de fois que le dé affiche un nombre supérieur ou égal à 3.

- a) Quelle est la loi suivie par X?
- b) Calculer la probabilité P(X = 5).
- c) Calculer la probabilité $P(X \le 5)$.
- d) Calculer la probabilité $P(X \ge 3)$.

Correction

a) On répète 7 fois une expérience à deux issues : {3 ; 4 ; 5 ; 6} et {1 ; 2}.

Le $\underline{succès}$ est d'obtenir $\{3; 4; 5; 6\}$.

La **probabilité du succès** sur un lancer est égale à $\frac{4}{6} = \frac{2}{3}$.

X suit donc une loi binomiale de paramètres : n = 7 et $p = \frac{2}{3}$.

b) Avec Texas Instruments:

Touches « 2nd » et « VAR » puis choisir « binomFdP ».

Et saisir les paramètres de l'énoncé : binomFdP(7,2/3,5)

Avec Casio:

Touche « *OPTN* » puis choisir « *STAT* », « *DIST* », « *BINM* » et « *Bpd* ». Et saisir les paramètres de l'énoncé : BinominalePD(5,7,2/3)

Avec le tableur :

Saisir dans une cellule : =LOI.BINOMIALE(5;7;2/3;0)

On trouve $P(X = 5) \approx 0.31$.

La probabilité d'obtenir 5 fois un nombre supérieur ou égal à 3 est environ égale à 0,31.

c) Avec Texas Instruments:

Touches « 2nd » et « VAR » puis choisir « binomFRép ».

Et saisir les paramètres de l'énoncé : binomFRép(7,2/3,5)

Avec Casio:

Touche « *OPTN* » puis choisir « *STAT* », « *DIST* », « *BINM* » et « *Bcd* ». Et saisir les paramètres de l'énoncé : BinominaleCD(5,7,2/3)

Avec le tableur :

Saisir dans une cellule : =LOI.BINOMIALE(5;7;2/3;1)

On trouve $P(X \le 5) \approx 0.74$.

La probabilité d'obtenir au plus 5 fois un nombre supérieur ou égal à 3 est environ égale à 0,74.

d)
$$P(X \ge 3) = 1 - P(X \le 2)$$

 $\approx 1 - 0.045$ (à l'aide de la calculatrice ou du tableur)
 ≈ 0.955 .

4) Représentation graphique

Méthode : Établir une loi binomiale avec la calculatrice ou le tableur

- Vidéo https://youtu.be/8f-cfVFHlxg Tuto TI
- Vidéo https://youtu.be/l9OoHVRpM8U Tuto Casio

Soit X une variable aléatoire qui suit une loi binomiale de paramètre n=5 et p=0,4. Représenter graphiquement la loi suivie par X par un diagramme en bâtons.

Correction

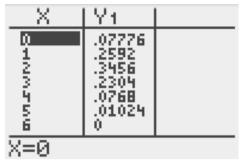
On affiche le tableau de valeurs exprimant P(X = k) pour k entier, $0 \le k \le 5$.

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Avec Texas Instruments:

Touche « Y= » et saisir comme expliqué plus haut :

Afficher la table : Touches « 2nd » et « GRAPH » :



Avec Casio:

Dans « MENU », choisir « TABLE »;

Saisir comme expliqué plus haut :

Afficher la table : Touche « TABL » :

Avec le tableur :

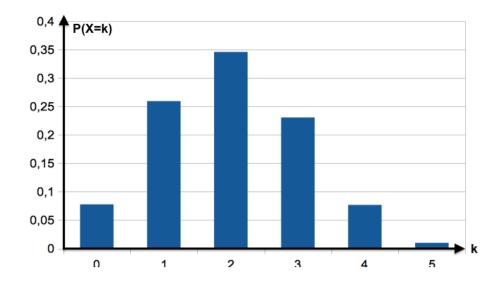
Saisir dans la cellule B1:

=LOI.BINOMIALE(A1;5;0,4;0)

Et copier cette formule vers le bas.

	B1 ‡	⊗ ⊘ (e fx)	=LOI.BINOMIALE	(A1;5;0,4;0)
	Α	В	С	D
1	0	0,01110		
2	1	0,2592		
3	2	0,3456		
4	3	0,2304		
5	4	0,0768		
6	5	0,01024		

On peut ensuite représenter la loi binomiale par un diagramme en bâtons :



Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

<u>www.maths-et-tiques.fr/index.php/mentions-legales</u>