PRODUIT SCALAIRE - Chapitre 2/2

Tout le cours en vidéo : https://youtu.be/dll7myZuLvo

Partie 1 : Produit scalaire et orthogonalité

1) Projeté orthogonal

Propriété : Les vecteurs \vec{u} et \vec{v} sont orthogonaux si et seulement si \vec{u} . $\vec{v} = 0$.

Démonstration :

Si l'un des vecteurs est nul, la démonstration est évidente.

Supposons le contraire.

 $\vec{u} \cdot \vec{v} = 0$

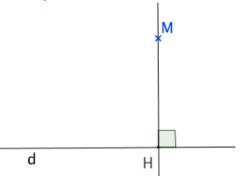
 $\Leftrightarrow \|\vec{u}\| \times \|\vec{v}\| \times cos(\vec{u}\;;\; \vec{v}) = 0$

 $\Leftrightarrow cos(\vec{u}; \vec{v}) = 0$

 \Leftrightarrow Les vecteurs \vec{u} et \vec{v} sont orthogonaux

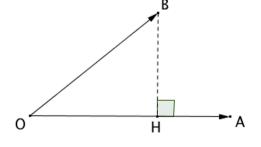
<u>Définition</u>: Soit une droite *d* et un point M.

Le **projeté orthogonal** du point M sur la droite *d* est le point d'intersection H de la droite *d* avec la perpendiculaire à *d* passant par M.



<u>Propriété</u>: Soit \overrightarrow{OA} et \overrightarrow{OB} deux vecteurs non nuls. H est le projeté orthogonal du point B sur la droite (OA).

On a : \overrightarrow{OA} , \overrightarrow{OB} = \overrightarrow{OA} , \overrightarrow{OH}



Démonstration:

 $\overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{OA}.(\overrightarrow{OH} + \overrightarrow{HB})$, d'après la relation de Chasles.

$$=\overrightarrow{OA}.\overrightarrow{OH}+\overrightarrow{OA}.\overrightarrow{HB}=\overrightarrow{OA}.\overrightarrow{OH}$$

En effet, les vecteurs \overrightarrow{OA} et \overrightarrow{HB} sont orthogonaux donc \overrightarrow{OA} . $\overrightarrow{HB} = 0$.

Méthode: Calculer un produit scalaire par projection

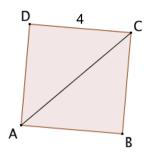
- Vidéo https://youtu.be/2eTsaa2vVnl
- Vidéo https://youtu.be/K4lzn5xB Qk
- Vidéo https://youtu.be/-Hr28g0PFu0

Soit un carré ABCD de côté 4. Calculer les produits scalaires :

a)
$$\overrightarrow{AB}$$
. \overrightarrow{AC}

b)
$$\overrightarrow{AB}$$
. \overrightarrow{AD} c) \overrightarrow{AD} . \overrightarrow{CB}

c)
$$\overrightarrow{AD}$$
. \overrightarrow{CB}



Correction

a) B est le projeté orthogonal de C sur (AB), alors :

$$\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AB} = \|\overrightarrow{AB}\|^2 = AB^2 = 4^2 = 16$$

- b) \overrightarrow{AB} . $\overrightarrow{AD} = 0$ car les vecteurs \overrightarrow{AB} et \overrightarrow{AD} sont orthogonaux.
- c) Comme $\overrightarrow{CB} = \overrightarrow{DA}$, on a :

$$\overrightarrow{AD}.\overrightarrow{CB} = \overrightarrow{AD}.\overrightarrow{DA} = -\overrightarrow{AD}.\overrightarrow{AD} = -\|\overrightarrow{AD}\|^2 = -AD^2 = -4^2 = -16$$

2) Transformation de l'expression \overrightarrow{MA} . \overrightarrow{MB}

Propriété : L'ensemble des points M vérifiant l'égalité \overline{MA} . $\overline{MB} = 0$ est le cercle de diamètre [AB].

Démonstration au programme :

Vidéo https://youtu.be/D3n8aYsSQLA

Soit *O* le milieu du segment [*AB*].

On a:

$$\overrightarrow{MA}.\overrightarrow{MB}=0$$

$$\Leftrightarrow$$
 $(\overrightarrow{MO} + \overrightarrow{OA}).(\overrightarrow{MO} + \overrightarrow{OB}) = 0$

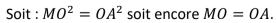
Comme O est le milieu de \overline{AB} , on a : $\overrightarrow{OB} = -\overrightarrow{OA}$

Soit:

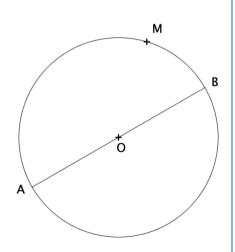
$$(\overrightarrow{MO} + \overrightarrow{OA}).(\overrightarrow{MO} - \overrightarrow{OA}) = 0$$

$$\Longleftrightarrow \overrightarrow{MO^2} - \overrightarrow{OA}^2 = 0 \quad \text{car} \ (\overrightarrow{u} + \overrightarrow{v}). \ (\overrightarrow{u} - \overrightarrow{v}) = \overrightarrow{u}^2 - \overrightarrow{v}^2$$

$$\Leftrightarrow MO^2 - OA^2 = 0$$

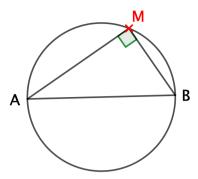


M appartient donc au cercle de centre O et de rayon OA, c'est-à-dire le cercle de diamètre [*AB*].



Comme \overrightarrow{MA} . $\overrightarrow{MB} = 0$, les vecteurs \overrightarrow{MA} et \overrightarrow{MB} sont orthogonaux.

L'ensemble des points M tel que le triangle ABM soit rectangle en M est donc le cercle de diamètre [AB].



<u>Méthode</u>: Appliquer l'égalité \overrightarrow{MA} . $\overrightarrow{MB} = 0$

On donne deux points A et B.

Représenter l'ensemble des points P, tel que : $PB^2 = \overrightarrow{AB} \cdot \overrightarrow{PB}$

Correction

$$PB^2 = \overrightarrow{AB}.\overrightarrow{PB}$$

$$PB^2 - \overrightarrow{AB} \cdot \overrightarrow{PB} = 0$$

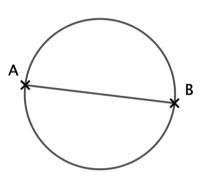
$$\overrightarrow{PB}$$
, \overrightarrow{PB} - \overrightarrow{AB} , \overrightarrow{PB} = 0

$$\overrightarrow{PB} \cdot (\overrightarrow{PB} - \overrightarrow{AB}) = 0$$

$$\overrightarrow{PB} \cdot (\overrightarrow{PB} + \overrightarrow{BA}) = 0$$

 \overrightarrow{PB} . $\overrightarrow{PA} = 0$, d'après la relation de Chasles.

L'ensemble des points P est donc le cercle de diamètre [AB].



Partie 2 : Produit scalaire dans un repère orthonormé

Dans cette partie, le plan est muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$.

<u>Propriété</u>: Soit $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs. On a : $\vec{u} \cdot \vec{v} = xx' + yy'$.

<u>Méthode</u>: Calculer un produit scalaire à l'aide des coordonnées (1)

Vidéo https://youtu.be/aOLRbG0libY

Soit $\vec{u} \begin{pmatrix} 5 \\ -4 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -3 \\ 7 \end{pmatrix}$ deux vecteurs. Calculer \vec{u} . \vec{v}

Correction

$$\vec{u} \cdot \vec{v} = 5 \times (-3) + (-4) \times 7 = -15 - 28 = -43$$

Méthode: Calculer un produit scalaire à l'aide des coordonnées (2)

Vidéo <u>https://youtu.be/cTtV4DsoMLQ</u>

On considère quatre points $A \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $B \begin{pmatrix} 5 \\ 3 \end{pmatrix}$, $C \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ et $D \begin{pmatrix} 5 \\ -2 \end{pmatrix}$.

Démontrer que les droites (AB) et (CD) sont perpendiculaires.

Correction

- Calculons les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD} .

$$\overrightarrow{AB} \begin{pmatrix} 5-2\\3-1 \end{pmatrix} = \begin{pmatrix} 3\\2 \end{pmatrix}$$
 et $\overrightarrow{CD} \begin{pmatrix} 5-1\\-2-4 \end{pmatrix} = \begin{pmatrix} 4\\-6 \end{pmatrix}$

- Calculons le produit scalaire des deux vecteurs :

$$\overrightarrow{AB}$$
. $\overrightarrow{CD} = 3 \times 4 + 2 \times (-6) = 12 - 12 = 0$

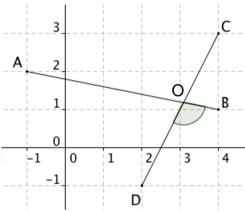
- Le produit scalaire est nul donc les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux. Et donc, les droites (AB) et (CD) sont perpendiculaires.

Méthode: Appliquer plusieurs formules du produit scalaire

Vidéo https://youtu.be/Ok6dZG8WIL8

Calculer la mesure de l'angle \widehat{BOD} en calculant le produit scalaire \overrightarrow{AB} . \overrightarrow{CD} de deux façons.

On pourra lire les coordonnées des points A, B, C et D dans le repère ci-contre.



Correction

• En calculant le produit scalaire \overrightarrow{AB} . \overrightarrow{CD} avec la formule du cosinus, on a :

$$\overrightarrow{AB}.\overrightarrow{CD} = AB \times CD \times \cos(\widehat{BOD})$$

Or:
$$AB = \sqrt{5^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26}$$

$$CD = \sqrt{2^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20}$$

Donc:
$$\overrightarrow{AB}$$
. $\overrightarrow{CD} = \sqrt{26} \times \sqrt{20} \times \cos(\widehat{BOD})$
= $\sqrt{520} \times \cos(\widehat{BOD})$

• En calculant le produit scalaire \overrightarrow{AB} . \overrightarrow{CD} avec la formule des coordonnées, on a :

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 5 \\ -1 \end{pmatrix}$ et \overrightarrow{CD} $\begin{pmatrix} -2 \\ -4 \end{pmatrix}$, donc :

$$\overrightarrow{AB}.\overrightarrow{CD} = 5 \times (-2) + (-1) \times (-4) = -6$$

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr

• On a ainsi : $\sqrt{520} \times \cos(\widehat{BOD}) = -6$

$$\cos(\widehat{BOD}) = -\frac{6}{\sqrt{520}} = -\frac{6}{2\sqrt{130}} = -\frac{3}{\sqrt{130}}$$

Et donc : $\widehat{BOD} \approx 105,3^{\circ}$.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales